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1.0 Summary

The FIFRA Environmental Model Validation Task Force, a collaborative effort of scientists from the crop
protection industry and the U.S. Environmental Protection Agency, has compared the results of PRZM3
predictions with measured data collected in 18 different leaching and runoff field studies as part of a
process to improve confidence in the results of regulatory modeling.

The work presented in this report shows that PRZM3 provides a reasonable estimate of chemical runoff
at the edge of a field. Simulations based on the best choices for input parameters (no conservatism built
into input parameters) are generally within an order of magnitude of measured data with better agreement
observed both for larger events and for cumulative values over the study period. When the model input
parameters are calibrated to improve the hydrology, the fit between predicted and observed improves
(results are usually within a factor of three). When conservatism is deliberately introduced into the input
pesticide parameters substantial over-prediction of runoff loses occur.

Simulations with PRZM3 show that reasonable estimates of leaching were obtained in homogeneous
soils where preferential flow is not significant. PRZM3 usually did a good job of predicting movement of
bromide in soil (soil and soil pore-water concentrations were generally within a factor of two of predicted
values). For simulations based on the best choices for input parameters (no built in conservatism),
predictions of soil concentrations for pesticides were usually within a factor of three and soil pore-water
estimates were within a factor of 11. When the model input parameters were calibrated to improve the
simulation of hydrology, predicted pesticide concentrations in soil pore-water were usually within a factor
of two of measured concentrations. Because of the sensitivity of leaching to degradation rate, the most
accurate predictions were obtained with pesticides with relatively slow degradation rates. When
conservative assumptions were used to define input pesticide parameters, predictions of pesticide
concentrations were usually at least a factor of two greater than predictions made using the best estimate
of input parameters without any built in conservatism.

The initial work conducted by different contractors showed the importance of having an SOP which
defines the selection of all model input parameters. The most satisfactory way to implement regulatory
modeling is through the development of a shell which provides all input parameters related to the
scenario, with the user providing only the parameters related to the specific pesticide being assessed.

In addition to the results of the comparisons of model predictions with measured values, important
products of the task force include a Standard Operating Procedure for conducting site-specific
simulations, guidelines for conducting calibration simulations, development of a Plackett-Burman tool for
conducting sensitivity analyses with PRZM 3.12, development of a Crystal Ball® Pro Monte-Carlo
procedure for assessing the effects of input parameter uncertainty on PRZM 3.12 simulations, and the
preparation and publication of data sets which can be used to validate other models in the future.

Recommendations for future work to improve regulatory models include implementation of more
sophisticated evapotranspiration routines, allowing for seasonal variation of various model parameters
(such as curve numbers, crop cover, and Manning’s surface roughness coefficients), better procedures
for estimating site-specific degradation rates in surface and subsoils, and improved sorption routines.
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2.0 Introduction

Environmental fate models have been used to describe the behavior of crop protection products in the
environment since the early 1980’s. During the mid-1980’s these models started to be used as part of the
registration process in various countries to evaluate potential movement of crop protection products to
ground and surface water. In recent years, the importance of modeling for evaluating environmental
exposure has continued to increase. In 1992 the EPA established a “New Paradigm” for the evaluation of
ecological risk, which recommended computer modeling as a cost-effective exposure assessment tool
that could help speed up regulatory decision making. Use of modeling was also adopted in the new
European Union registration process. As a result of the increased regulatory use of environmental
models, several work groups consisting of regulators, industry, and research institutes/environmental
consulting firms have been established to develop procedures for the use of these models in estimating
environmental concentrations for regulatory risk assessment. One of the first of these groups formed was
the FIFRA Exposure Modeling Work Group in the U.S.

Considerable research has been performed over the past 15 years to compare model predictions with
experimental results. However, as a result of the limitations of this research, there still exists a general
lack of confidence in present-day models and concern remains about their validation status. Reports
from the Aquatic Risk Assessment and Mitigation Dialogue Group and the EPA Science Advisory Panel
that it spawned have pointed out the critical importance of having confidence in the results of computer
models.

Therefore, the FIFRA Environmental Modeling Work Group initiated in 1995 a Model Validation Project,
aimed at justifying the use of modeling tools that are needed for risk refinement under EPA’s New
Paradigm and to address the issues raised by the SAP. This Model Validation Project was funded and
conducted by an industry task force (The FIFRA Environmental Model Validation Task Force) composed
of scientists from Aventis, BASF, Bayer, Dow AgroSciences, Dupont, FMC, ISK Biosciences, Monsanto,
Rohm & Haas, Syngenta, Uniroyal, and Valent. Representatives of the U.S. EPA participated in the
technical meetings and served as advisors on all of the subgroups. The work of the group was reviewed
by a panel of modeling experts from universities and other government agencies.

Program Objectives

The overall goal of the project was to improve confidence in the primary environmental fate models used
for regulatory exposure assessments under FIFRA in the U.S.

For purposes of this project, the term “validation” refers to the characterization of how well the primary
models describe the observed fate of pesticides under real world conditions. Rather than requiring model
results to be within certain limits of accuracy for a model to be “validated,” the intent of this project was to
characterize models’ strengths and weaknesses and to characterize how close the modeling results were
to real-world observations across a wide, but realistic range of input parameters.

As a parallel objective, the project has led to the creation of readily usable data sets and methodology for
the calibration and validation of new or revised models in the future. The project has identified which
features of the existing primary environmental fate models most require improvement as well as provide a
template for the design of future field studies, thus facilitating further model development

Project Outline and Scope

The Model Validation Project has been divided into three phases:

Phase 1. Review of published literature.

ED_005427A_00022434-00007
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Phase 2. Selection of literature and company data sets for modeling simulations.
Development of SOPs for conducting modeling simulations.
Development of statistical procedures for evaluating model performance.
Assembly of literature and company data sets.

Conduct of model simulations.
Comparison of model results to observed data.
Guidance on development of new data sets for model validation.

Phase 3. Programs (if needed) to address model or data deficiencies.

The scope of this validation effort had to be carefully defined to make the task achievable. Exposure
assessments were limited initially to movement in the unsaturated zone for leaching assessments and
edge-of-field concentrations for runoff assessments. PRZM and GLEAMS were originally chosen as the
models to be tested. These two models, currently used within EPA and industry for regulatory exposure
assessments, had been previously recommended by FIFRA Environmental Modeling Work Group. Some
initial simulations were performed with GLEAMS. However, the decision of USDA not to continue support
of GLEAMS as well as difficulties of adequately describing the soil profile in a way that would result in
predictions comparable to field data, resulted in the discontinuing the validation work with GLEAMS.
Previous validation work with GLEAMS was included in the literature review.

This report describes the program through the first two phases. No decision has been made about the
need for or the nature of a phase 3 program. However, some model improvement activities were
included as part of the work performed in phase 2

Types of Comparisons

The following three different levels of comparisons of model predictions with field data have been
considered in the Mode! Validation Project:

Cold. This refers to model runs in which no site-specific data (other than weather data) were
employed in the model run. Model input parameters were estimated using the typical EPA
procedure. This type of assessment provided an estimate of how well current practices work to
generate regulatory exposure estimates.

Site-Specific. This refers to model runs in which all available site-specific measured data were
employed to define the input parameters. This includes the use of measured on-site sall,
hydrologic, and pesticide properties, such as partition coefficients and observed field dissipation
half-lives for the site. This provided an estimate of how well the model can be used to describe
movement at a specific site.

Calibration. In these model runs, the experimental results were used to refine the values of
selected model inputs to provide closer agreement between model predictions and observed field
data. These runs determined which parameters require adjustment, evaluated the improvement
in fit, and identified model components that may require improvement.

In the first two types of comparisons, the task force developed procedures to prevent the modeler from
having access to the field results. In the third type, the modeler had full access to all relevant data.

ED_005427A_00022434-00008
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3.0 Literature Review

3.1 Model Validation

The first phase of the Model Validation Project was to review the existing information on model validation
of PRZM and GLEAMS. The primary purpose of this literature review was to assess the quality and
quantity of existing information on the validation of PRZM and GLEAMS to determine whether the
additional model validation studies are needed. A second purpose of the literature review was to collect
information that would be useful in planning future model validation studies. This report summarizes both
aspects of this literature review and well as presents the reasons why the FIFRA Exposure Modeling
Work Group concluded that more validation research would be useful in improving confidence in models
used in regulatory assessments.

Literature on Validation of PRZM and GLEAMS

A literature search identified 35 articles involving the calibration/validation of model simulations with
PRZM and/or GLEAMS with measured data. These calibration/validation studies, summarized in Table
3-1, use data from seven countries on three continents as well as a number of different compounds.

Due to the varied nature of the papers and the lack of details for both model predictions and measured
results, a detailed systematic comparison of model predictions is not possible. In order to provide
qualitative information on model performance, the results of each paper are summarized in Appendix 1.
The majority of the papers indicated good agreement between model predictions and measurements or
that the models generally predicted more movement than actually occurred. These results over the wide
range of conditions reported in the papers lend general support to the use of PRZM and GLEAMS in the
regulatory process, especially for predicting leaching.

Some of the deficiencies in the PRZM and GLEAMS models noted in the 35 papers are summarized in
Table 3-2. Author's comments on deficiencies were included whether or not such deficiencies were
actually reflected in the comparison of predictions with measured data. The larger number of deficiencies
listed for the PRZM model is a reflection of the greater use of PRZM in the 35 papers rather than an
indication that GLEAMS has less deficiencies.. In fact, most of the deficiencies noted in the table are
common to both models. Similarly the lack of comments related to runoff is the result of most of the
comparisons reported in the papers are for downward movement in the soil profile.

Evaluation of PRZM and GLEAMS Validation Studies

After review of the papers listed in Table 3-1, the FIFRA Exposure Modeling Work Group decided that
additional comparisons of field data and model predictions would be useful to supplement existing studies
in helping improve confidence in the regulatory use of environmental models for predicting leaching and
runoff. The following observations contributed to this decision:

e None of the published studies used the current version of either model (this is especially
relevant to PRZM where the runoff routines have been changed significantly).

e Very few of the studies focused on runoff losses (most studies focused on the mobility of crop
protection products in the soil profile).

e The number of studies having quantitative validation results is minimal. Since few of the
published studies consider model validation the primary purpose of the field experiments, often
data sets were not as extensive as would be desirable for model validation.

¢ Modelers were aware of field results in most of the studies (although in some of the studies
where the field results were known, modelers claimed to make no adjustments to the input
parameters). Therefore, in these studies the comparisons of model predictions and
experimental measurements could be considered calibration since in model validation the
modeler should have no knowledge of the field results to prevent biasing the selection of input
parameters.

ED_005427A_00022434-00009
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Van den Bosch and Boesten (1995) independently reviewed validation efforts with PRZM, LEACHP,

GLEAMS, and PELMO. For both PRZM and GLEAMS, they assessed the quality of the validation efforts
in six papers (all of which are included in Table 3-1). They concluded that the validation status of PRZM
and GLEAMS was low, especially at concentrations near the European 0.1 ug/L drinking water guideline.

Literature on Validation Research

The literature review also highlighted some areas requiring careful consideration in a model validation
study. These include:

Model Validation versus Validation of the Regulatory Modeling Process. In regulatory applications,
the purpose is usually to predict the amount or concentration of a compound in runoff water or ground
water at a site where extensive research has not been performed. This is in direct contrast to the model
developer who usually is trying to fit predictions to existing data obtained from a field experiment. For
regulatory applications, the selection of some model parameters (such as soil properties, degradation
rates, sorption parameters, or compartment sizes) may not be as straightforward as for the model
developer. In regulatory applications, many of the parameters must be obtained from information in data
bases or estimated from laboratory studies or studies performed at different locations. Since the
selection of model input parameters is usually one of the most important factors affecting the accuracy of
predicted results, the validation process must be designed so it is not merely an exercise testing the
ability of the modeler to select proper input parameters (Jones and Rao, 1988). However, an incorrect
assessment in a regulatory application is equally wrong whether resulting from a poor selection of input
parameters or poor model performance. If an incorrect assessment results from the poor choice of input
parameters, this is not necessarily an indication of poor model performance. However, if an input
parameter to a specific model cannot be selected with sufficient accuracy to ensure satisfactory model
predictions, then this model may not be suitable for use in regulatory applications.

Therefore, the validation of a regulatory application of a model must include validation of the procedures
for selecting input parameters. This requires that these procedures be exactly described to eliminate (or
minimize) the influence of the modeler. As a result validation of a regulatory application requires an
additional step beyond the traditional validation process when the model developer validates (or
calibrates) the model by comparing its predictions with available experimental data. In the second step
both the procedure for selecting input parameters and the resulting model predictions are tested. This
two step validation process of testing the model followed by testing of the modeling procedure is
necessary to avoid misleading results, since the process of selecting the input variables can compensate
for faults in a model.

The importance of the modeling process was shown in a ring test of the PRZM, LEACHP and
VARLEACH models (Brown et al., 1996), which demonstrated that differences in judgment even with
experienced modelers can affect model predictions (Brown et al., 1996). In this test five modelers were
given the same description of a field experiment and were then asked to model the movement of an
experimental pesticide to obtain information on the concentration of the pesticide in the soil profile at 220
days after application and in the soil-water at a depth of 1 m. The authors noted that no two sets of
predicted results for a given model were exactly the same. This result is not surprising given the wide
variation in the assumed values for many of the input parameters. For example all five modelers used
five different assumptions about the thickness of the various soil segments. The authors concluded:
“The ring test shows that modelling results for the same scenario and model can vary between users. In
this case, the variation between five simulations was similar to that associated with the measurements of
pesticide behavior in the field. This user-dependence of modeling has not been previously considered,
but should be an important component of evaluating model output. For example, much effort is currently
targeted at model validation and defining the range of that validity. To date, this effort has involved
comparison between a given set of field observations and a single simulation or range of simulations
carried out by a single user. Even where predicted results give an acceptably accurate simulation of field
behavior, the findings of this ring test suggest that claims of validity will be misleading unless it can be
proved that similarly accurate results would be obtained by a number of independent users.”
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Acceptability of Model Predictions. The acceptability of model predictions compared with field
measurements is influenced by use in a regulatory setting. It is critical that regulatory modeling
procedures do not significantly under predict the movement of residues into ground or surface water, so
that unexpected impacts on the environment do not occur. Model predictions indicating greater
movement than what actually occur are not a problem as long as unnecessary restrictions do not result
from the risk assessment. The challenge is to develop a modeling process that produces a conservative
set of results while minimizing the difference between model predictions and experimental resulits.

Quantitative Procedures for Comparing Model Predictions with Observed Values. Most
validation/calibration comparisons in the studies in Table 3-1 are qualitative, using statements such as
the data generally agree with the model predictions. Obtaining statistical descriptions of these
comparisons is more difficult; however, a number of papers (for example, Haan et. al., 1995; Parrish and
Smith, 1980; Walker et al., 1995; Boekhold et al., 1993; Loague et al., 1995) have been published which
examine various procedures for quantifying the ability of model predictions to describe observed values.
Boekhold et al. (1993) discuss five approaches to assessing model performance: factor f approach,
comparison of confidence intervals, comparison of mean values, comparison of variances, and graphical
methods. For their validation work with PESTLA they chose the factor f approach, which is based on the
capacity index approach described by Parrish and Smith (1990). Walker et al. (1995) present several
different indices for expressing the overall fit and descriptions of degradation and movement. Loague et
al. (1995) suggest that summary variables that can be obtained from concentration variables include total
mass, center of mass, peak concentration, time for a critical concentration to leach to a depth of interest,
and depth of the leaching front and advocate the use of root mean square error as a statistical measure
of model performance. Comparison of predictions with measurements is discussed in more detail in
Section 3-3

The choice of variables for comparison alsc must consider the regulatory application. For example if a
model correctly predicts the amount of a chemical moving to the water table but the timing is off a couple
of days, the error in timing makes no difference in a risk assessment. Obviously a model correctly
predicting runoff as a function of time within a rainfall event is desirable, but a model that only gets the
total loss during an event correct may be adequate in a regulatory application. A model that correctly
predicts movement to the water table may be acceptable even if it does not correctly predict soil
concentration profiles. However, the fundamental validity of the model processes must be maintained.
For example, correctly predicted runoff or leaching losses of crop protection products must be considered
irrelevant if water movement is not adequately described. Armstrong et al. (1996) describe a multi-step
validation process that considers water movement, tracer movement, and then movement of the specific
chemical.

Separation of Modeler from Field Data. To maximize the credibility of a validation exercise that
includes the selection of input parameters, the modeler should have no knowledge of the field results.
Otherwise, the validation work will probably be characterized as calibration.

Calibration Simulations. If the predictions based on the initial set of input parameters do not provide
acceptable agreement, a set of calibration simulations may be performed to help determine whether the
source of error is the result of the model or the selection of input parameters. Such calibration should not
consist of a simplistic regression of input parameters to minimize difference between observed and
predicted values since most water quality models have enough adjustable parameters to fit a limited set
of field observations (Haan et al., 1995), but rather a systematic variation of input parameters constrained
to feasible ranges. Results of sensitivity analyses (such as those described by Fontaine et al., 1992 and
Walker et al., 1995) can be useful tools in performing such simulations. Calibration simulations should
normally be performed as a two step process: first calibrating parameters affecting movement of water to
optimize the hydrology, then changing chemical-specific properties to best describe chemical movement.
Haan et al. (1995) describe a statistical protocol that transforms parameter uncertainty into prediction
uncertainty using probably density functions in order to “distinguish a good fit that is based on artificial
manipulation of an overparameterized model from a good fit that is based on an accurate description of
the processes that control contaminant transport.”
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Improving the Quality of Field Studies Used to Validate Models. Additional site-specific information
(for example, more detailed soil information, application of a tracer, or soil-specific laboratory sorption and
degradation studies) may be useful when a field study is being used to obtain data for mode! validation.
Smith et al. (1990a) review some of the items which should be considered when conducting field studies
for model validation. This subject is important when reviewing existing data sets for inclusion in validation
studies as well as in the planning of new studies to be used in model validation.

Conclusions

Comparisons of PRZM and GLEAMS predictions with field measurements have been made in a number
of studies found in the literature. Most of these studies demonstrated that PRZM can be a useful tool in
assessing leaching. Although PRZM predictions in surface soil in the early portions of a study are not
particularly useful, its over predicting of residue movement in later stages of an experiment provide
conservative assessments suitable for use in estimating potential leaching in regulatory risk
assessments. However, because of various limitations of the available literature studies, additional
validation research to supplement existing studies would improve the confidence in the runoff and
leaching predictions of PRZM and GLEAMS in regulatory applications. This validation research should
carefully consider:

¢ Improving and standardizing the process for selection of input parameters.

¢ Developing procedures for performing calibration simulations to determine whether
differences between model predictions and field measurements are the result of model
inaccuracies or the choice of input parameters.

e Devising appropriate procedures for keeping results of field studies from modelers
performing simulations to validate model predictions while providing access when calibration
simulations are being performed.

¢ Developing quantitative statistical procedures for comparing model predictions with field
measurements.

e ldentifying the combinations of soil properties and weather patterns under which the models
provide estimates that are sufficiently accurate for use in regulatory decision making.

¢ ldentifying specific areas where each of the models can be improved.

e ldentifying the type and quantity of measurements that must be made in field studies to
ensure suitability for mode! calibration and/or validation.

ED_005427A_00022434-00012



FIFRA Environmental Model Validation Task Force Final Report 13

Table 3-1. A partial listing of model validation or calibration studies conducted with GLEAMS and PRZM.

Reference Models Locations Compounds Soil Types
Barrett, 1985 PRZM Kansas, U.S.A. triasulfuron Las Animas loamy sand
Caietal., 1993 PRZM Jiangsu province, China aldicarb sandy loam
Carsel et al., 1985 PRZM New York, U.S.A. aldicarb Haven sandy loam
Carsel et al., 1988 PRZM Florida, U.S.A. metalaxyl Blanton fine sand
Maryland, U.S.A. Marton fine sandy loam
Dibbern and Pestemer, 1992. GLEAMS, PRZM, | Germany terbuthylazine loess soil
CALF, LEACHM,
SESOIL, EQUI
Dowd et al, 1993 PRZM Georgia, U.S.A. lindane Cecil (clayey thermic, Typic
Kanhapludult
Flori et al., 1993 PRZM Po Valley, ltaly metamitron, chioridazon, | field capacity and wilting point of 33
ethofumesate, lenacil and 10 vol %
Hegg et al., 1988 PRZM South Carolina, U.S.A. aldicarb Dothan loamy sand
Jones et al., 1983 PRZM Florida, U.S.A. aldicarb sand and fine sands
Jones et al., 1986 PRZM Arizona, U.S.A. aldicarb, aldoxycarb sandy loam
California, U.S.A. aldicarb loamy sand and sandy loam
Florida, U.S.A. aldicarb, aldoxycarb sand and fine sands
Indiana, U.S.A. aldicarb silty clay loam
Maine, U.S.A. aldicarb loam
Michigan, U.S.A. aldicarb sandy loam
Nebraska, U.S.A. aldicarb loamy sand
New York, U.S.A. aldicarb sandy loam
North Carolina, U.S.A. aldicarb, aldoxycarb sandy loam
South Carolina, U.S.A. aldicarb Dothan loamy sand
Virginia, U.S.A. aldicarb, aldoxycarb clay loam
Washington, U.S.A. aldicarb sandy loam
Wisconsin, U.S.A. aldicarb, aldoxycarb sand, loamy sand, and sandy loam
Jones st al., 1887 PRZM Nebraska, U.S.A. aldicarb loamy sand
Khan and Green, 1988 PRZM Hawaii, U.S.A. DBCP Pauwela clay and Hamakuapoko
silty clay
Leonard et al., 1990 GLEAMS Georgia, U.S.A. fenamiphos Cowarts loamy sand
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Table 3-1 (continued). A partial listing of model validation or calibration studies conducted with GLEAMS and PRZM.

Reference Models Locations Compounds Soil Types
Loague, 1992 PRZM Hawaii, U S.A. EDB Leilehua (Humoxic Tropohumults)
Loague et al., 19892 PRZM Hawaii, U.S.A. EDB Leilehua (Humoxic Tropohumuits)
and Wahiawa (Tropeptic Eutrustox)
Loague et al., 1989b PRZM Hawaii, U.S.A. DBCP, EDB, TCP Leilehua (Humoxic Tropohumults)
Loague, et al., 1995 PRZM Hawaii, U.S . A. bromide, chlorpyrifos, Kawaihapai and Wahiawa volcanic
fenamiphos s0ils

Lorber and Offutt, 1986 PRZM North Carolina, U.S. A. aldicarb sandy loam

Wisconsin, U.S.A. loamy sand and sandy loam
Mueller, 1994 PRZM Sweden (lysimeter) dichlorprop, bentazon Lanna clay and Mellby sand

Mueller et al., 1992

GLEAMS, PRZM

Georgia, U.S.A.

alachlor, metribuzin,

Dothan loamy sand and Appling

norflurazon sandy loam
Nicholls, 1994 PRZM, CALF Sweden (lysimeter) bentazon Nantuna sand
Parrish et al., 1992 PRZM, AGGR Georgia, U.S.A. aldicarb, metolachlor, loamy sand to sandy loam
bromide
Pennell et al 1990 GLEAMS, PRZM, | Florida, U.S.A. aldicarb, bromide Astatula sand
CLMS, MOUSE,
LEACHMP
Perry, 1991 PRZM Kansas, U.S.A. atrazine, alachlor, Eudora silty loam, Eurdora sandy
metolachlor, trifluralin, loam, and Eudora-Kimo clay
2,4-D
Sadeghi et al., 1995 PRZM Maryland, U.S.A. atrazine luka and Hatboro silt loam
Sauer et al., 1890 PRZM Wisconsin, U.S.A. atrazine, metolachlor, Plainfield sand
carbofuran, chlorpyrifos
Shirmohammadi and Knisel, 1994 | GLEAMS Sweden (lysimeter) dichloprop, bentazon Mellby sand
Shirmohammadi et al., 1987;1989 | GLEAMS Maryland, U.S.A. atrazine, carbofuran, Matapeake silt loam
cyanazine, dicamba,
metolachlor, simazine
Sichani et al., 1991 GLEAMS Indiana, U.S.A. alachlor, atrazine, Clermont silt loam

cyanazine, carbofuran,
chlorpyrifos
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Table 3-1 (continued). A partial listing of model validation or calibration studies conducted with GLEAMS and PRZM.

Reference Models Locations Compounds Soil Types
Smith, M. C., et al., 1991 GLEAMS, PRZM Georgia, U.S.A. atrazine, alachlor, Lakeland sand
bromide
Smith, W. N, et al., 1991 PRZM, LEACHMP | laboratory experiments atrazine sandy loam
with intact soil cores
Trevisan et al., 1993 PRZM, BAM, italy atrazine, metolachlor loam
LEACHM
Walker et al., 1995 GLEAMS (runoff U.K. (6 locations), specific compounds not various soils, runoff simulations with
only); PRZM2, Germany (10 locations), specified but include sandy loam and clay loam
LEACHP, France (6 locations), ltaly | alachlor, chloridazon,
VARLEACH (4 locations) metribuzin, metsulfuron-

(leaching only)

methyl, terbuthylazine,
runoff simulations only

with alachlor
Walker et al., 1996 PRZM, U.K. alachlor, atrazine, packed columns of sieved surface
VARLEACH, metribuzin s0il (75 % sand, 10 % silt, 15 %
LEACHP clay, and 1.91 % organic matter)

Zacharias st al., 1984

GLEAMS, PRZM

Virginia coastal plain,
US.A

bromide, atrazine,
metolachlor

Suffolk sandy loam
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Table 3-2. A summary of selected deficiencies noted by papers summarized in Table 2-1.

Model Deficiency References
PRZM Does not consider preferential flow (including Barrett, 1992; Dowd et al., 1993; Loague
residues in lower layers under predicted due fo et al., 1989b; Loague et al., 1995;
preferential flow) Nicholls, 1994; Parrish et al., 1892;
Perry, 1991; Sadeghi et al., 1995; M. C.
Smith et al., 1991; W. N. Smith et al.,,
1991; Zacharias and Heatwole, 1984
Overestimates downward movement through Carsel et al.,, 1985; Hegg et al., 1988;
soils, especially at later sampling intervals Jones et al., 1986; 1987; Loague et al.,
1889ab; Loague et al., 1995; Mueller et
al., 1992; Parrish et al., 1992; Pennell et
al., 1990; Sauer et al., 1980; Trevisan et
al, 1993; Walker et al., 1985
Soil concentration profiles not predicted Dibbern and Pestemer, 1992; Jones et
accurately al., 1986; Loague et al., 1989a; Parrish
et al., 1992; Zacharias and Heatwole,
1994
Difficulties with estimating dispersion accurately | Barrett, 1992; Flori et al., 1993; Jones et
(including effect on peak concentrations and the | al., 1983; Parrish et al., 1992; Walker et
effect of thickness of soil horizon on simulation al., 1985
results)
Under predicts persistence in surface soils Cai et al., 1993; Jones et al., 1986;
Loague et al., 1995; Lorber and Offutt,
1988; Pennell et al., 1990
Does not consider upward movement due to Loague et al., 1995; Walker et al., 1995
capillary transport
Estimation routines for evaporation are too Walker et al., 1995; Zacharias and
simple and inaccurate Heatwole, 1994
Simplicity of degradation description (including Loague et al., 1995; Mueller et al, 1992;
independence of degradation rate independent | Walker et al., 1995
of soil moisture and temperature)
soil hydraulics are too simplistic for vadose W. N. Smith et al., 1991
zone applications or for less porous soils
poor results for uncalibrated simulations of deep | Loague, 1992
leaching (about 20 m)
GLEAMS Does not consider preferential flow (including Shirmohammadi and Knisel, 1994;

residues in lower layers under predicted due to
preferential flow)

Sichani et al., 1991; M. C. Smith et al.,
1981; Zacharias and Heatwole, 1994

Overestimates downward movement through
soils, especially at later sampling intervals

Mueller et al. 1992; Pennell et al., 1890;
Shirmohammadi et al., 1987;1989

Soil concentration profiles not predicted
accurately

Dibbern and Pestemer, 1992; Zacharias
and Heatwole, 1994

Degradation rate is independent of soil moisture

Mueller et al, 1992

Underestimates surface runoff

Shirmochammadi et al., 1987; 1989

Model cannot handle partially frozen soil

Shirmchammadi and Knisel, 1994

Runoff parameters are hard to obtain for soils
located outside the U.S.

Walker et al., 1995
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3.2 Sensitivity Analysis

One of the goals of FEMVTF is to provide uncertainty bounds for numerical modeling based upon
comparison with open literature and industrial data sets (field dissipation, prospective ground water, and
runoff studies). Results give both regulators and scientists a measure of how well current environmental
fate models can predict real world behavior. An integral part of these tasks is determining the quality of
data sets that span a wide range of philosophy for design and conduct of field research. Model sensitivity
analysis can be instrumental in deducing the quality of the various data sets by indicating those input
parameters needed for accurate model predictions. Such information aids in interpretation of modeling
results and may be a necessary precursor to any subsequent statistical comparison of model predicted
results to field observations {Haan et al., 1995). Sensitivity analysis can also prove useful for future field
study design by providing indications of parameters requiring the greatest accuracy in measurement.

Input Data Sensitivity for Transport Modeling. Multiparametric models, such as transport models, may
be sufficiently non-linear in their response to compromise their ability for validation. Sensitivity to input
parameter variance can be used to identify sensitive input parameters and, secondarily, can allow for
evaluation of model efficacy (ability to produce a desired effect; Addiscott et al., 1995). Sensitivity
analysis should be conducted across the full range of likely parameter values, and probably a little further
(Addiscott, 1993). In addition to evaluating sensitivity of input parameters, the effect of certain input
assumptions which are not parameters per se (for example, selection of layer thickness for a leaching
model; Addiscott and Whitmore, 1991) should be considered.

Although transport modelers develop an intuitive sense for sensitive input parameters, this intuitive sense
is restricted to the universe of data sets modelers may have evaluated. Statistical approaches to
sensitivity analysis can be used to validate modeler intuition and to extend knowledge of model
robustness and efficacy across a wider range of input data sets. Unfortunately, limited documentation of
input data sensitivity (either intuitive or statistical) exists for transport models.

Empirical Description of Transport Model Sensitivity. Walker et al. (1995) reported the effect single
parameter variance on output (total pesticide residues with time, residue distribution with depth, and
fraction leached) for a standard set of input data for PRZM2 (as well as LEACHP and VARLEACH). Soil
half-life and Kd significantly influenced total soil residues and fraction of residues leached, respectively.
A 1.5-fold increase in half-life (133 to 200 days) resulted in a 43 % increase in total soil residues.
Variance in Kd from 1.7 to 8 resulted in about 10% greater soil residues. The effect of variance in either
half-life or Kf on output was non-linear. When a Freundlich Kf and 1/n were used instead of Kd, variance
in the Freundlich coefficient (1/n) was not judged to be particularly sensitive, but was more important for a
lower associated Kf value.

Soil parameters were varied under fixed inputs for weather and chemical properties (Walker et al., 1995).
Decreased bulk density (1.5 to 1.0) resulted in 30% greater mean leaching depth. Initial soil moisture
content and field capacity were insensitive soil parameters. In contrast, Monte-Carlo analyses with
PRZM showed field capacity to be the most sensitive parameter for prediction of leaching for a short-lived
(half-life of 30 to 60 days), weakly sorbed (Koc = 20 t0 40 L kg'1) pesticide (Carsel et al., 1988ab).

Finally, the sensitivity of PRZM2 to the treatment of dispersion was considered an important modeling
consideration (Walker et al., 1995). PRZM2 proved particularly sensitive to thickness of layer segments,
especially in the surface few centimeters, as this influenced the effect of numerical dispersion. This can
be minimized by careful initial evaluation of the effect of segment thickness or, if appropriate site
hydrological information are available, through use of an analytical dispersion value. Although results are
not reported for PRZM2, with LEACHP set to a 3-cm layer thickness, a change in numerical dispersion
from 0 to 20 mm caused an approximate 10 % decrease in peak pesticide concentration without an
increase in leaching loss. A further increase to 50 mm resulted in significantly increased leaching loss
and a flatter pattern of pesticide residue concentration in the soil profile. Dispersion assumptions have
additionally been cited as a critical aspect of PRZM model performance by Carsel et al. (1988ab) and
have been addressed in PRZM2 and PRZM3 with the inclusion of the method of characteristics option
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that solves the chemical transport equation with elimination or minimization of numerical dispersion
(Mullins et al., 1994).

Leonard and Knisel (1988) observed that for GLEAMS leaching, much of the variance in model outcomes
for probabilistic modeling with 50 years weather was attributable to rainfall distribution relative to timing of
pesticide application. A given large rainfall event on the day of application is sufficient to initiate leaching
even for a short-lived molecule. Worst-case rainfall scenarios were suggested as a means to reduce
variances. When Koc varied from 100 to 10 L. kg‘1 for a pesticide with a 60-day half-life, the predicted 50"
percentile leaching losses were increased by about 3-fold on a sandy clay loam soil (pesticide leached
increased from ca 5to 15 %). A similar sensitivity analysis on a sand-textured soil showed the same
relative magnitude of effect but the absolute amount leached was considerably more significant (pesticide
leached increased from ca 12 to 35 %). Leonard et al. (1992) presented similar conclusions regarding
annual runoff losses for pesticides as predicted by GLEAMS (that is, rainfall, especially in a short post-
application interval has an overriding importance on runoff predictions). These authors simulated
moderately to strongly sorbed pesticides (Koc of 100 to 1000) with short soil half-lives (15 days) and also
stressed that as half-life increased, sensitivities to inputs such as rainfall might decrease and/or variables
related to sediment transport might increase in importance.

Truman and Leonard (1991) investigated GLEAMS predictions of pesticide leaching losses as influenced
by environmental fate parameters (surface and subsurface half-lives as well as Koc) for two soil
scenarios subjected to the same 50-year pattern of rainfall. As would be expected, increased surface
and subsurface half-lives (5 to 30 days and 2.5 to 360 days, respectively) and decreased Koc (10 to

100 L. kg“) increased the amount of predicted leaching loss. Rainfall timing immediately after application
was especially important when pesticide half-lives were short. For selected scenarios, potential leaching
losses from the root zone increased 2 to 7-fold as subsurface half-life increased by 6-fold.

Sensitivity analysis for pesticide runoff and sediment transport by CREAMS was performed for weakly
and strongly sorbed pesticides by Lane and Ferreira (1980). Rainfall was highly significant for a weakly
sorbed molecule but not for a strongly sorbed molecule. Application rate and runoff yield as well as
application and incorporation efficiency were always significant.

Documentation for GLEAMS similarly indicates sensitive input parameters (Knisel, 1993). Runoff curve
numbers (especially CN2) are particularly sensitive parameters that increase in sensitivity as values of
CN increase. Porosity and field capacity are additional sensitive parameters governing water flow
(leaching versus runoff). When overland flow is segmented to reflect complex slopes, the soil loss ratio
(C-factor in USLE) becomes a sensitive parameter. The Koc is the most sensitive pesticide input
parameter. For Koc less than 500, surface runoff decreases as Koc decreases because of mobilization
below the 0-1 cm surface layer. For Koc greater than 1000, increased Koc shifts pesticide loss from
runoff to sediment transport. Soil half-life is sensitive as well. Application rate maybe sensitive
depending on the effect of soil half-life and foliar interception to reduce the amount of pesticide available
for transport.

Zacharias and Heatwole (1994) used comparisons of bromide and pesticide leaching from uncalibrated
and calibrated runs of PRZM and GLEAMS to gain insight as to sensitive components of these transport
models. Curve number, field capacity, and wilt point were considered sensitive parameters for both
models as were leaf area index for GLEAMS and depth of soil water extraction for PRZM.

Statistical Description of Transport Model Sensitivity. Fontaine et al. (1992) statistically evaluated
the effect of input parameter variance for prediction of leaching depth at a fixed total residue
concentration when modeled by PRZM within a Monte Carlo shell. Sensitivity analysis was performed for
35 PRZM input parameters when varied over a range appropriate for pre-emergence soybean herbicide
use in the midwestern USA. The results were evaluated by both Plackett-Burman (PB) (Plackett and
Burman, 1946) and Fourier amplitude sensitivity analysis (FAST). Both statistical tools produced
comparable relative sensitivity rankings. The PB analysis proved preferable to FAST because of the
much reduced computational intensity of this approach. (PB utilizes a partial factorial design whereas
FAST uses Monte Carlo sampling.) Table 4.3-1 shows those inputs with the largest sensitivity
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coefficients. The most critical input parameter, key period rainfall, refers to the post application timing of
a rainfall event sufficient to initiate leaching and indicates the overriding importance of rainfall/irrigation
distribution as a critical PRZM input. PRZM3 will not be markedly different from PRZM in the relative
importance of these key input parameters as long as the aforementioned sensitivity to surface layer
thickness/dispersion is addressed.

Table 3-3. PRZM input variables of greatest sensitivity for pre-emergence pesticide application to
soybean, midwestern USA (Fontaine et al., 1992).

Important for most ranges
Key period rainfall
Pesticide half-life
Detection limit
Koc
Organic carbon fraction
Available water in surface horizon

Important for many ranges
Runoff curve number 3
Runoff curve number 2
Bulk density in surface horizon
Total pesticide applied

Sometimes important

Bulk density in horizon 2
Available water in horizon 2

Cryer and Havens (Cryer and Havens, 1993; Cryer et al., 1994) have utilized PB designs to evaluate
sensitive parameters affecting pesticide runoff predictions from GLEAMS and EPICWQ as well as
leaching predictions from PRZM2. Analysis of 20 input parameters for EPICWQ used a fixed single year
of weather (weather was assumed a priori to be the most significant input class) with a significant effect
judged any variance significant at P < 0.01 to 0.02. For chlorpyrifos application to corn in the Midwest,
sensitive parameters (ranked) were runoff curve number (CN) after planting, timing of the third application
date, timing of the second application date, and the planting date. Similar sensitivity analysis for
GLEAMS indicated the sensitive inputs (ranked) were CN, pesticide water solubility, and pesticide soil
half-life. (The variance ranges for the analysis were 70 to 95 for the SCS curve number, water solubility
of 1to 6 ug L", and soil half-life of 4 to 70 d; output variables considered were daily maximum and annual
fractional runoff and leaching of pesticide, daily maximum and annual water flow rates and erosion mass).
The experience of these modelers is that for fixed pesticide properties, ranked sensitivity for runoff inputs
is:

weather >>> CN >> all other inputs
and for leaching the dominant sensitive parameters are porosity, field capacity, and hydraulic conductivity
(S. Cryer, personal communication).

3.3 Comparison of Predictions with Measurements in Model Validation
In order to validate PRZM3.12 the FEMVTF has studied the varied approaches used {o provide a

measure of the correlation of model responses to measured data. In general, these measures of
correlation or in the converse, residual error, take the form of subjective graphical analyses or objective
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statistical evaluations. The following will serve to provide a brief overview of a portion of the available
literature concerned with the process of mode! validation.

Carsel et al. (1986) provide an approach for the evaluation of PRZM1.0 performance based on graphical
comparisons of estimated and measured pesticide movement versus depth. PRZM1.0 was calibrated
with measured site-specific data and subsequently validated using different hydrologic responses based
on long-term climatologic records. Results indicated that PRZM1.0 effectively conserved pesticide mass
balance in that integration under the observed and predicted response profiles demonstrated equivalent
pesticide mass over time. The primary emphasis of the effort of Jones et al. (1986) was to evaluate the
accuracy of the predictions of PRZM1.0. Thirty-four sites were evaluated where observed and predicted
maximum leaching depth concentrations of aldicarb or aldoxycarb were compared. The authors
evaluated model performance by assessing the leading edge of pesticide movement. The results
indicated that the simulated maximum leaching depths generally agreed with the field data. Based on
model estimates versus measured data comparisons the authors advocated the use of PRZM1.0 for
estimating the magnitude of the depth and timing of the leading edge of pesticide movement but not the
ability of the model to predict concentrations. The work of Leonard et al. (1990) illustrates a validation
exercise where GLEAMS simulation output was compared to measured data. The model was evaluated
without calibration; the effect of the variability of input parameters on model output was not assessed.
GLEAMS estimated values for mass of the parent and metabolites of concern were graphically shown to
compare favorably with the measured data within the variability of the measured data. Simulated and
observed concentrations at depth in the soil at selected dates also closely corresponded. Salo et al.
(1994) also provides a validation of the modified CREAMS/GLEAMS model output response compared to
measured data from field studies conducted in Finland. Model and measured responses were compared
primarily through subjective graphic means. The lack of measured data was discussed particularly in
light of the consequence of data deficiencies and the resulting inability to perform statistical analysis. In
addition, model sensitivity analysis was performed. Results indicate that model estimates and measured
data were in good correlation during the early stages of the study; the correlation declined however over
time. The decreasing correlation over time was attributed to the model's inability to account for the
interaction of temperature and soil moisture on degradation processes and adsorption/desorption
discrepancies.

An extensive discussion regarding the implementation and procedures for model validation efforts have
been presented (Smith et al., 1990). The work was specifically focused on PRZM1.0 and RUSTIC (Dean
et al, 1989) where model estimates were compared to measure data derived from 4 study sites. The
authors note that technical issues that require consideration prior to a validation exercise include a) the
need for appropriately data rich benchmark data sets, b) well defined performance and acceptance
criteria, ¢) a recognition of the variability of the observed data and d) well defined parameter estimation
procedures. The definition of performance criteria is a recurrent theme found throughout the model
validation literature. Defining the performance criteria allows for the relative inaccuracies of model
responses versus measured data. This is particularly apparent with regard to concentration and the
effect of measuring and estimating parts per billion levels of pesticide in a highly variable environment.
Smith et al. (1990) define performance criteria based on the purpose of the modeling analysis. For
screening level analyses, a level of accuracy is expected to be within an order of magnitude. For site
specific or higher tiered modeling exercises the authors suggest that a factor of 2 - 4 can be sufficient in
certain instances but a factor of less than 2 may be appropriate in others.

Smith et al. (1990b) also suggest that objective statistical measures useful for the comparison of model
estimates versus measured data include a) paired comparisons of predicted and observed values in
space and time, b) integrated comparisons relating to spatially or temporally composited data such as
monthly or annual means or totals versus corresponding model estimates and ¢) comparisons of
cumulative frequency distributions of observed data and model predictions in stochastic situations.
Statistical measures for paired data and spatially and temporally integrated performance tests include
descriptive statistics, error and regression analyses and correlation coefficients. Plots of observed versus
predicted values were also advocated as visual indications of agreement. The graphic analysis
approaches include a) observed and predicted concentration profiles, b) ranges and medians of
integrated observed and predicted data, ¢) matched predicted and observed integrated values and d)
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cumulative distribution functions. The authors note that the variability associated with model input can be
addressed by employing Monte Carlo analyses. Uncertainty analysis was discussed within the context of
the approaches outlined by Carsel et al. (1988).

Pennell et al. (1990) compared the performance of PRZM 1.0, GLEAMS 1.8.54 and the pesticide
component of LEACHM1.0 based on water mass balance, the transport of bromide and the transport and
degradation of the reactive solute aldicarb. The indices used to compare and validate the models
included the depth to the solute center of mass, the relative mass of aldicarb and metabolites aldicarb
sulfoxide and aldicarb sulfone remaining within the root zone and soil profile and solute concentration
distributions with soil depth. Objective criteria used to validate and compare the models included
root-mean-square error (RMSE), normalized objective function (NOF) and reduced error estimates
(REE). Model estimated values were compared to measured field averages for the parameter of interest
thereby not specifically considering field level variability. Model evaluation was based on graphical
analysis and the objective functions noted previously.

The authors note that it may be unrealistic to expect deterministic pesticide simulation models to
accurately predict solute concentration distributions. Comparisons of solute concentration distributions,
i.e., accounting for field variability may, as the authors note, be the most rigorous test of a model. Due to
intrinsic and extrinsic variability, field measurement of concentration distributions are subject to
considerable error. Pennell et al. (1990) conclude ultimately that the ability to validate model predictions
of concentration distributions may ultimately be limited by the inability to account for the uncertainty in
measured data from within the field.

A description of model evaluation procedures based on graphical displays and statistical criteria has been
provided by Loague and Green (1991). The statistical analyses encompass the analysis of residual
errors and the differences between observed and predicted values. These include maximum error (ME),
root mean square error (RMSE), coefficient of determination (CD), modeling efficiency (EF) and
coefficient of residual mass (CRM). In order to demonstrate modeled and measured response
correlation, values for ME, RMSE, CD, EF and CRM should approach 0.0, 0.0, 1.0, 1.0 and 0.0,
respectively. The authors note however that the statistical analyses defined as above have serious
potential limitations due to sample size deficiencies. In addition, the authors advocate the use of
graphical analyses including a) comparison of observed and predicted concentration profiles, b)
comparisons of ranges and medians of integrated values of predicted and observed data, ¢) comparison
of matched predicted and observed integrated values and d) comparison of cumulative distribution
functions for integrated values.

Parrish et al. (1992) employed the factor-of-f technique and measures of goodness of fit to evaluate the
predictive capabilities of two models, PRZM and the aggregate model for field transport and
transformation (AGGR) versus measured data. The measured responses were compiled over a
four-year period conducted in the Dougherty Plain region of Georgia. The leaching characteristics of the
pesticides aldicarb, metolachlor and the conserved solute bromide were examined. The factor-of-f
technique was based on the outcome of the USEPA Workshop on Field Applicability Testing (USEPA,
1982, unpublished data) where two levels of regulatory use of models were identified. The two defined
levels of regulatory use of models include a) screening, where the level of accuracy is anticipated to be
within an order of magnitude and b) site specific or higher tiered models where the level of accuracy is
required to be within a factor of 2 - 4. The details of the factor-of-f approach are outlined in Parrish and
Smith (1990). In addition, based on the approach described by Loague and Green (1991) measures of
goodness-of-fit employed included determinations of maximum error (ME), root mean square error
(RMSE), coefficient of determination (CD), modeling efficiency (EF) and coefficient of residual mass
(CRM).

Allen et al. (1990) in their discussion of the PIRANHA modeling suite suggest that the key to model
validation efforts is the appropriate hypothesis test. The authors also advocate paired sample parametric
testing procedures. In this case the validity criteria was defined such that the model was deemed "valid"
if predictions were within a factor of two of the measured data at least 95% of the time. In addition to the
model validity criteria the proposed method of validation included the following: a) determine an
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appropriate error measure to test the hypothesis of validity, b) specify the minimum sample size, c¢) paired
samples, d) compute the error measure and test the null hypothesis and €) compare the calculated t-
statistic to the appropriate point on the t-distribution.

Zacharias and Heatwole (1994) and Zacharias et al. (1994) employed both subjective (graphical) and
objective (parametric statistics) criteria to compare simulated versus measured data. The comparisons of
the simulated versus observed data were made considering pesticide concentrations and mass within the
root zone, depth of solute peak concentration and center of mass. Additionally, the ratio between
observed and predicted data was tested versus the factor of 2 standard. Finally predicted values were
categorized with respect to observed median, quartiles and range. Quantitative evaluation of the mass
remaining in the root zone and depth of solute center of mass was based on the root mean square error
and normalized objective function (NOF). Based on the study GLEAMS and PRZM performed well in
predicting pesticide mass, but were less reliable in predicting pesticide concentration distributions in soil.

Typically sample sizes in field studies conducted for testing pesticide transport models are often not large
enough to ascertain the nature of the data distribution. The purpose of the Zacharias et al. (1994) study
was o present robust quantitative techniques where the validity of the statistical procedures was not
dependant upon the assumption of a specific probability model of the population. For model validation
this distribution free analysis was based on non-parametric techniques. Specifically, the authors propose
a non-parametric approach used to test the factor-of-f approach defined by Parrish and Smith (1990). In
addition, non-parametric approaches employing the median value for cases where the mean value of the
distribution was not appropriate as the representative value of the distribution of interest were described.
These non-parametric methods for analysis of residual error were based on the methods presented by
Loague and Green (1991). The non-parametric approaches for the analysis of residual error described
by Zacharias et al. (1994b) include the median absolute error (MJdAE) calculated rather than the RMSE,
the nonparametric coefficient of determination (CD*) and non-parametric modeling efficiency (EF*).
Additionally, techniques were described where the assumption of Gaussian distributions were tested.

A stepwise process for the performance of model validation under the auspices of the EU Environmental
Research Programme has been described (Melacini and Gunther, 1995). The intent of the study was to
provide a uniform basis for the comparison of model performance. The models evaluated included
PRZMZ2.0 the pesticide component of LEACHM and VARLEACH2.0. The authors suggest the use of
preliminary subjective graphical analysis where model estimates are compared to measured data.
Subsequent objective statistical analyses encompassed tests for evaluation of overall model fit,
degradational fit and distributional fit. Measures of the overall fit of model estimates versus measured
observations include a) scaled total error, a scaled index based on total observations enabling one to
compare results across different studies, b) scaled root mean square error statistics and a model
efficiency statistic. The second step of the process entailed the assessment of the degradational fit, i.e.,
whether the model correctly estimated the correct pesticide mass throughout the soil profile. Statistical
measures in this regard include coefficients of residual mass and degradation load, a measure of the
weight of the error in prediction relative to the total discrepancy. Finally, measures of the distributional fit
of the model, how well or badly the model predicts the distribution of a pesticide in the soil profile was
employed. The measures of distributional fit are irrespective of the absolute quantities of the residue
involved and include coefficients of determination and shape, a cumulative value test (testing the validity
of the simulation of the pesticide movement down the soil profile) and an a determination of the mean
depth representing the center of residue mass.

Vanclooster et al. (1996) describe an approach for evaluation multiple models under the auspices of the
European COST Action 66 program. The paradigm for the validation procedure using lysimeter data sets
entails a calibration or model error minimization step and a subsequent model test versus independent
data. Models were evaluated using subjective graphical and objective statistical measures. The
graphical analyses include plots of predicted versus measured data, time series plots of predicted and
measured data and residual time plots, i.e. plots of model error versus time. Indices of residual error are
generally after the methods of Loague and Green (1991) and others and include a) average differences,
b) maximum error, ¢) root mean square error, d) model efficiency, e) coefficient of residual mass and f)
coefficient of determination.
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Armstrong et al. (1996) advocate a multi-tiered approach to model validation using both graphical and
statistical testing. The authors note the pitfalls of any validation effort, namely too few data points
collected for parameters of concern, particularly pesticide concentrations in soil and water. Also
discussed was the uncertainty associated with model input. The components of the multi-tiered approach
include a) parameterization of the model using only independently measured parameters, b) validation of
water movement and water content of the soil, ¢) validation of conserved solute movement, d) validation
of pesticides fate in the soil using parameters reflective of independently measured fate information and
finally, e) validation of pesticide leaching in terms of comparisons of model predictions with respect to
patterns and orders of magnitude of occurrences.

Model input parameter variability in both the spatial and temporal sense has been widely recognized to
significant impact model response output. Initial efforts to capture the effects of variability in the temporal
sense focused on the consequences of, as an example, the long-term climatologic variation employed by
Carsel et al. (1986). Model parameterization reflecting, as examples, adsorption/desorption behavior and
degradation were held constant and variability was introduced via the climate data. Thus, the model
could be used to infer the behavior of pesticide movements under varied climatologic conditions. The
draw back of this approach was that it did not account for the inherent spatial variability of degradation
and adsorption/desorption, etc., that is associated with field studies and the behavior of chemicals under
environmentally relevant conditions. Subsequent work (Carsel et al., 1988a) employed Monte Carlo
techniques to account for the spatial variability noted with respect to soils in field studies. Statistical
transformation paradigms particularly the Johnson transformation technique and log transformations were
used to convert original random variable, non-normal soil characterization data derived from a national
database into normal distributions. Monte Carlo techniques were used to vary field capacity, wilting point
and organic matter, soil hydrologic group, weather year and degradation rate (triangular distribution).
While no validation exercise was performed, results pertinent to the current discussion demonstrated
cumulative probability distribution functions for annual pesticide movement and the influence of model
input variability on model response estimates.

A stochastic approach for the PELMO model has been developed and termed MCPELMO (Klein et al.,
1999). MCPELMO is based on the deterministic PELMO model but in addition has an incorporated shell
allowing for the stochastic simulations for a number of geographically diverse regions. The stochastic
efforts entailed climatic variations where nine locations and 30 years of measured weather data were
employed. The authors concluded that the temporal variation afforded by the weather data had a greater
impact on low mobility pesticides than high mobility pesticides. The authors also suggests that spatial
variability in soil may be more influential than the temporal variability on model estimates.

Boekhold et al. (1993) present a validation methodology for the PESTicide Leaching and Accumulation in
soil model (PESTLA) that includes both statistical and graphic analyses. The factor-f-approach (Parrish
and Smith, 1990) was again used. The factor-of-f approach accounted for the aspect of uncertainty of
size f around the predicted value. Thus the model is considered reflective of the relevant environmental
situation when measurements falls within the range of acceptable model predictions as defined by the
size of the f factor. The authors also discuss an approach based not on the derivation of the predicted
mean from a deterministic simulation but on the estimate of the predicted mean and predicted standard
deviation of model output based on a stochastic sampling approach for model input variables. The utility
of the Monte Carlo analysis was that it provided a quantitative measure of model output uncertainty as a
function of model input variability or uncertainty. In addition to typical subjective and objective measures,
the authors advocate the use of comparisons of cumulative probability distribution functions (cpdf) of
observed and predicted data.

ED_005427A_00022434-00023



FIFRA Environmental Model Validation Task Force Final Report 24

As a follow-up to the previous study, van den Bosch and Boesten (1994) provide an approach for
validation of the PESTLA model where both graphical and objective statistics were utilized. Because
measured data reflecting the endpoint of concern i.e. groundwater concentrations of ethoprophos or
bentazone were scant, the authors turned to an alternate metric for use in the validation process. The
metric selected was center of pesticide mass as a function of soil core depth. The underlying assumption
was that this measured value would reflect ultimate groundwater concentrations providing that the travel
time between the center of mass and the water table was minimal.

The peak concentration values were log transformed and the average and standard deviation of the
average were calculated. The confidence intervals around the average of the measured peak
concentration of one or two times the standard deviation was used to provide a measure of the
uncertainty associated with measured data. The resulting interval boundaries were transformed back to a
normal distribution, to give the range of uncertainty in the measurements, used for the statistical test.

The factor-of-f approach was applied where f=2 and f= 5.

The model was tested across 11 cases; 6 cases for ethoprophos and 5 cases were based on the
bentazone data set. Validation results were dependant upon time and the factor-of-f used to validate the
model. In seven cases the model was validated regardless of the uncertainty (f = 2 or 5) allowed around
the predicted value. In one case during the later stages of the study the model could not be validated
regardless of the uncertainty factor selected. In the remaining cases the model was validated only when
high uncertainty was allowed around the predicted value.

Eckhardt and Wagenet (1998) evaluated the consequences of the inherent variability in soil hydrology
and chemical applications and the uncertainty of measurements of soil and chemical properties on the
leaching potential of atrazine. The model employed was the pesticide component of LEACHM (Hutson
and Wagenet, 1992). The methodology included a model calibration step where model and measured
response differences over a 120-day cropping period were minimized via calibration of water flow, as
influenced by evapotranspiration and plant root water uptake, and adjustments of the first-order
degradation rate of atrazine.

Following the calibration step, the impact on model output response due to the uncertainty associated
with two critical transport parameters a) unsaturated hydraulic conductivity and b) atrazine degradation
rates were evaluated. Additionally, the effect on model output response due to the uncertainty associated
with the spatially heterogeneity of pesticide applications was also evaluated. The uncertainty analysis
was conducted underlain by 22 years of weather data measured at the test site. The effects of spatial
variability in the hydraulic conductivity of the soil and the uncertainty of degradation rates below the root
zone were represented through discrete sampling from probability density functions. The probability
density functions from which the discrete samples for hydraulic conductivity and pesticide degradation
rate were selected were defined based on empirical data. The results clearly indicate that the uncertainty
associated with hydraulic conductivity, pesticide degradation rate and application rates influenced model
results.

Haan et al. (1995) provide a discussion regarding the evaluation of model performance in a situation
where there are no observed data on the quantities being modeled to assist in input parameter estimation
or model calibration. The procedures employed by Haan et al. (1995) include a) the conduct of a
sensitivity analysis on model input parameters, b) generation of probability distributions functions (pdf) of
input parameters, ¢) generate probability distributions of model output and d) use the output probability
distributions to assess the model. The authors advocate that the use of the measured data be held in
reserve such that the measured data do not enter the parameter estimation process. The authors note
that the measured responses are also subject to uncertainty. The uncertainty can also be quantified
using probability density functions. The overlap of the model output and measured response pdfs can if
available be utilized to evaluate model performance.
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4.0 Selection of Experimental Data Sets

Nine runoff and nine leaching data sets were selected for comparisons with mode! predictions. These
data sets are summarized in Tables 4-1 and 4-2. More complete information on each data set is provided
in Appendices 5 and 6.

The first step in the selection of data sets was to prepare criteria for determining “ideal” and “acceptable”
data sets, based on the data requirements as identified in the guidance documents for selection input
parameters for GLEAMS and PRZM as well as the consensus opinion of the task force scientists and
advisors. Data sets fitting the “ideal” criteria were used when available to the task force but other data
sets were also used. For both leaching and runoff studies, the criteria resulted in heavy emphasis on
industry data sets conducted within the U.S. to fulfill registration needs. In addition data sets were
obtained from the literature and from non-industry researchers. Studies excluded from consideration
were those conducted outside the U.S. (due to the limitations of the SOP for selection of input
parameters), lysimeter studies, and field dissipation studies (with sampling less than 1 m).

Table 4-1. The nine data sets used in the runoff simulations.

Data | Area | Slope Soil Type Crop Application Half-Life’ | Kd’
Set (ha) (%) Method' {d) {(mli/g)
GA1IR (364 |35 Loamy sand Cotton Aerial (L) 8 4
GA2R |3.04 |3-55 Sandy loam Sweet Corn | Foliar (L) 8 0.43
IAZR 7.0 4.3 Silt loam Comn T-Band, foliar, and | 30 121
broadcast (G, L)
I1A3R 0.065 |56 Silt loam Cormn T-Band, foliar, and | 30 121
broadcast (G, L)
1A4R 1.21 29 Silt clay loam Corn T-Band (G) 52 4200
T-Band (G) 121 12
IASR 0.065 2.8 Silt clay loam Corn T-Band (G) 52 3200
T-Band (G) 121 10
KY2R |0.065 |4.2-5.2 | Siltloam Corn T-Band (G)’ 52 2200
T-Band (G)* 121 6
MD1R |050 |2.0 Silt loam Corn Ground spray (L) | 165 0.6
MS1R |2.1 0.25 VF sandy loam | Cotton Foliar (L) 57 4.1

1. Formulation type given in parentheses (G = Granular, L = Liquid)

2. Level 2 half-life and Kd values for surface horizons reflect the values provided by the registrants.
3. Appliedtoplot1and 2

4. Appliedtoplot3
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Table 4-2. The nine data sets used in the leaching simulations.

Data Soil Type Hydrologic Crop Application Rate | Half-Life' | Kd'
Set Group (kg ai/ha) (d) {ml/g)
CA1L Loamy sand B Alfalfa 0.848 115 0.186
FL1L Sand A Citrus 5.6 17.5 0.088
GA1L Fine sandy loam A Sweet comn 12.6 8 0.176
GA2L Mixture, B/C Peanuts 2.49 69 0.42

~loamy sand 2.35 20 0.11

KS1L Sandy loam C Wheat 0.074 21 0.50
NC1L Loamy sand A Soybean 0.56 100 0.361
NC2L Loamy sand A Soybean 0.14 47 0.425
NC3L Loamy sand A Cotton 0.14 14 0.091
NC4L Loamy sand A Soybean 0.56 365 0.35

32

1. Site-specific half-life and Kd values for surface horizons reflect the values provided by the
registrants.

Ideal Runoff Data Sets

e Complete site-specific weather data covering the period of the study and including daily precipitation,
daily temperature, and pan evaporation.

Site dimensions, slope, and characterization of the occurrence of non-sheet flow.

Calculation of curve numbers possible for each quantified runoff event.

Site-specific soil physicochemical properties and profile description.

Information on time, rate, and method of pesticide application.

Site-specific laboratory measurements of soil half-life and Kd.

Foliar decay rates for foliarly-applied materials.

Daily runoff volume and sediment yield data.

Water- and sediment-phase pesticide concentrations measured with verifiable methodology and
sensitivity.

¢ Studies conducted and documented by a verifiable standard for QA/QC.

Acceptable Runoff Data Sets

e Spatially and temporally contemporaneous weather data available from a NOAA site.
¢ Natural field drainage channels known and described from a soil survey map.
Representative curve numbers obtained from a data base using soil hydrologic group, soil texture,
management practice, and crop.

Measured soil texture and organic carbon for the surface horizon.

Number and thickness of soil horizons obtained from a data base.

A measured soil half-life and sorption coefficient.

Documented management practices and timings of critical events.

Daily runoff volume and sediment yield data.

Total pesticide concentration via an acceptable method.

Peer-reviewed data and interpretations.

Ideal Leaching Data Sets

¢ Complete site-specific weather data covering the period of the study and including daily precipitation,
daily temperature, and pan evaporation.

e Edge-of-field runoff yield or temporal soil moisture with depth.

e Data for a conservative tracer of water flow.

e Site-specific soil physicochemical properties and profile description.
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¢ Information on time, rate, and method of pesticide application.

e Site-specific laboratory measurements of soil half-life and Kd or predictions from laboratory data on
the basis of site-specific soil properties.

e Qutput data including tracer concentrations and/or soil moisture measurements with depth and time.

Vadose zone measurements in replicate and at several depths providing pesticide and fracer

concentrations in soil water and total soil residue concentrations.

Verifiable analytical methodology with adequate method sensitivity.

Documentation of sampling design and suction lysimeter placement.

Data sets with demonstrated pesticide detects in ground water.

Studies conducted and documented by a verifiable standard for QA/QC.

Acceptable Leaching Data Sets

e Spatially and temporally contemporaneous weather data available from a NOAA site.
Representative curve numbers obtained from a data base using soil hydrologic group, soil texture,
management practice, and crop.

Measured soil texture and organic carbon by horizon.

Number and thickness of soil horizons obtained from a data base.

A measured soil half-life and sorption coefficient.

Documented management practices and timings of critical events.

Estimated soil water content on the basis of weather and soil physicochemical properties.

Output data including total pesticide and tracer concentrations with depth and time determined via an
acceptable method.

¢ Peer-reviewed data and interpretations.
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5.0 Development of Methodology.

The literature review along with previous experiences of the scientists on the task force identified some
methodology that the task force needed to develop in order to appropriately conduct the simulations and
interpret the results. These included detailed instructions on how to select the input parameters and
perform the simulations (including keeping experimental results separate from those performing
predictive simulations), a program for evaluating the sensitivity of model predictions to input parameters,
and statistical procedures for quantifying the fit between model predictions and field data.

5.1 Procedures for Selecting Input Parameters

The task force identified at an early stage (based on personal experience and the literature survey) that
providing detailed on selection of input parameters was critical to cold and site-specific comparisons.
This is to ensure that the validation focused on the model and the associated procedures rather than the
ability of the specific modeler. The task force prepared detailed SOPs for preparing input sequences for
both of these comparisons. The intent of these SOPs was to remove all judgment on the part of the
modeler. The importance of these SOPs was demonstrated in the initial pilot runs with different
modelers. Due to a combination of not specific-enough SOPs and modelers not following the SOPs, very
different predictions were obtained. As a result of this experience, changes were made in both the SOPs
and the modeling procedures. The task force considers these procedures an important product of the
validation research. The SOP for site-specific comparisons is attached as Appendix 2. The guidance for
cold simulations presented in Appendix 2 was superceded by a more recent EPA document.

Experimental results were not available to those performing the predictive simulations. One contractor
had the job of reviewing the specific data sets and abstracting the relevant input variables as well as the
experimental results. The input parameters were then passed onto another contractor who performed the
modeling simulations. This two step process minimized bias due to the judgment of the modeler and
helped maintain the confidentiality of the chemical(s) used in each study. All test chemicals were
identified by a code number rather than by a common name. As a final measure to ensure confidentiality,
task force members were not given access o the raw data submitted for each field study.

5.2 Guidance for Performing Calibration Simulations

As mentioned earlier, performing calibration simulations can provide valuable information about selection
of input parameters and model performance. However, it is important that calibration simulations do not
just consist of a simplistic regression of input parameters to minimize differences between observed and
predicted values since most water quality models have enough adjustable parameters to fit a limited set
of field observations. In order to make certain that such calibration simulations are performed, a
document providing guidance on how these simulations has been prepared and provided to the modelers
performing these types of simulations (attached as Appendix 3). Unlike the other comparisons (cold and
site-specific), the judgment of the modeler will still have some influence on the performance of these
simulations, although it should be minimal if the guidelines are followed.

The guidelines emphasize two principles. The first is that it must be clearly recognized that both the
observed field results and the predicted modeling results contain error and neither value should be
regarded as absolutely correct. The second is that model input parameters should not be adjusted
outside the ranges that are reasonable. If parameter adjustment beyond a reasonable range is required
to achieve a satisfactory fit, then there is a potentially a problem with either the model or the experimental
data.

The general procedure for calibrating modeling to experimental results (leaching or runoff) was to first
calibrate the hydrology of the model to provide a reasonable representation of water movement at the
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specific study site. Then, the simulation of the transport and dissipation of the chemical was evaluated
and calibrated as necessary.

5.3 Statistics

In the initial phase of evaluating model performance, the FEMVTF statistics committee performed
correlative and statistical analysis of measured field data and model predictions paired in time. The
unique nature of the correlative exercise of comparing model estimates with measured field data via
standard statistical objective analyses, while informative, failed to satisfactorily provide insight into the
validity of the model estimates. One of the keys to the success of a model validation study is the
collection of high-quality field measurements against which the model predictions will be tested.
Standard statistical analysis generally uses paired data, i.e., a model prediction and a field measurement
paired in space {(e.g., depth) and time. Although, the model response data sets were large, a critical
issue encountered was the typically small size of the field data set, particularly for runoff studies. The
greater the number of paired data points, the greater the confidence in the model validation study results.
For example, a site with less than 5 - 10 of a specific measurement would have reduced power for model
testing. The amount of rigorous statistical testing possible for the small data sets was found to be
severely limited. For example, for the runoff data sets analyzed, calculating the concordance statistic
(I-Kuei Lin, 1989, 1992) with three paired values provided little statistical power. The correlative exercise
of comparing model estimates with measured field data via standard statistical objective analyses failed
to identify factors associated with the uncertainty of measured environmental fate data and potential
model inputs.

Therefore, to evaluate the impact of uncertainty, additional statistical analyses were performed on
selected data sets. As an initial step to evaluate the impact of uncertainty, a sensitivity analysis was
performed using an approach based on that of Plackett and Burman (19486) to identify key model input
parameters for runoff and leaching simulations.

Monte-Carlo analysis was used to evaluate the uncertainty associated with each sensitive input
parameter. One of the most important steps in this process was the development of distributions for each
key parameter that could be sampled during the Monte-Carlo analysis. Specific criteria were developed
for establishing these sampling distributions to ensure consistency in the procedures for evaluating model
prediction error across sites and also to ensure that the sampling distributions represented, to the degree
possible, the actual site-specific uncertainty and variation in the parameters. Therefore, the criteria
effectively increased the confidence that the Monte Carlo uncertainty analysis results reflect the true
model prediction error associated with a specific site and parameter set. In addition, the criteria provided
a record against which the sampling distributions were judged.

5.4 Sensitivity Analysis

Introduction. Plackett-Burman was chosen as the procedure for conducting sensitivity analyses
because of its simplicity and suitability for the identification and ranking of variance components in
multiparametric models (Plackett and Burman, 1848). ldentification of the limited "primary" variables
controlling model outcomes allows for stepwise refinement of the model through identification and control
of the "primary" variables. PB analysis isolates the main effect of a variable in a model through a contrast
of outcomes at two different levels of the variable. This is accomplished by investigating equal numbers
of combinations of each variable at predetermined "high" and "low" levels dictated by the selection of the
perturbation factor. The average difference in outcomes over the various combinations of variable input
parameters allows for determining the effect of change per unit for each input parameter. Inclusion of a
subset of dummy variables produces a model error component that can be used to test the variance of
each input parameter of the model.

PB design uses an incomplete block factorial design where each input parameter is evenly weighted.
This reduces the number of unique model simulations required at the expense of assuming that
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interactions between more than two variables are insignificant, as this variance is grouped with the model
error. Designs for contrasts at two levels are presented by Plackett and Burman (19486).

Analysis of the results of a PB design is straightforward. First, the average difference in the sum of "high"

and "low" inputs for the test and dummy parameters is determined. The standard error variance of an
effect (V) is the variance due to dummy variables (Epj, where i = 1,n with n being the total number of

dummy variables; typically, n = 5 degrees of freedom for the PB program):

The standard deviation of the effect is thus,
= VI/Z

A simple t-test allows for testing of the significance of the effects found for the mean difference between
two real variables (X):

t=(Xh - X])/sy

where s =

|-

The result of PB analysis is, therefore, a ranked listing of variables in order of their relative effect on
model outcomes along with a determination of relative significance of the effect. PB analysis has been
used to evaluate input parameter sensitivity for transport modeling of pesticides at the regional scale
(Cryer et al, 1994, Fontaine et al, 1992; Cryer and Havens, 1997).

Soil Correlations to Eliminate Potential Nonsense Parameter Combinations. In addition to the
experimental design considerations, several physically based correlations for soil properties are
employed to avoid possible "nonsense" parameter combinations that can be obtained from the PB
analysis. The following simple equality must be obeyed for all soils.

Wilting Point (WP) < Field Capacity (FC) < Porosity (POR) {5-1}
If WP, FC, and POR are treated as independent parameters with certain magnitudes, then the PB design
could result in violation of equation 5-1. This typically causes the GLEAMS model to generate erroneous

results or not run at all. The following soil correlations are implemented for both the GLEAMS and PRZM
models to avoid potential nonsense soil parameter combinations.

FC(i)= 0.3486 - 0.0018 SAND(i)+ 0.0039 CLAY((i) + 0.0228 OM(i) - 0.0738 BD(i)

{5-2}

WP(i) = 0.0854 - 0.0004 SAND(i) + 0.0044 CLAY(j) + 0.0122 OM(i) - 0.0182 BD(i)
{5-3}
BD() = 2.65 [1 -POR(i)] {5-4}

The array subscripts "(i)" in equations 5-2 and 5-3 represent layers i, from i = 1 to i = total number of soil
layers that are being modeled.
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In these correlations, both WP and FC are treated as dependent variables and are functions of soil
texture (% CLAY and % SAND), bulk density (BD) , and soil organic matter (OM). Thus, % SAND, %
CLAY, OM and BD can be investigated in the sensitivity analysis. FC and WP are calculated from these
independent variables. Certain parameter combinations substituted into equations 5-2 through 5-4 do not
satisfy equation 5-1. In cases where WP > FC, WP is set equal to FC minus a small amount. In cases
where FC > PRO, FC is set to a value slightly less than POR. This guarantees that equation 5-1 will
always be true for all independent variable combinations regardless if the parameter combinations were
real or imaginary.

Soil Properties which Vary with Depth. Several soil properties can vary with depth throughout the soil
horizon. Examples include porosity/bulk density, field capacity, wilting point, organic matter, and pH. The
user specifies as input the soil depth increments where property values differ, along with the magnitudes
of the properties at each specified depth. The number of PB simulations required if all soil intervals were
modeled as being independent would dramatically increase if each soil layer were treated as a separate
entity. Therefore, parameters that can change with depth are grouped together and changed according
to the original user defined magnitude (via the nominal file) at each depth. For example, if soil organic
matter is chosen as an input parameter to investigate, the PB program changes all soil organic matter by
the same perturbation factor specified by the user. If the user specifies a 10 percent perturbation around
the nominal value and the PB design specifies a "-1", then all of the soil organic matters values for each
soil layer and for this simulation are decreased by approximately 10 percent. Thus, the same value for
organic matter is not simulated for all soil depth intervals, (unless the user specifies the organic matter
does not vary with depth in the nominal file) but rather a consistent and constant percent change occurs
for each depth value.

Implementation of Sensitivity Analysis within FEMVTF. Plackett-Burman sensitivity analysis has
been an integral part of numerical modeling risk assessment within the DowElanco GRASP and DEGAS
systems where it has been used to discern sensifive inputs to chemical transport models (Fontaine et al.,
1992; Cryer and Havens, 1993; Cryer et al., 1994; Cryer and Havens, 1997). The sensitivity analysis in
DEGAS has been automated and consists of FORTRAN and UNIX shell scripts. The system is robust
and usable and fits well with the goals of FEMVTF, therefore, the original code for PB analysis has been
re-partitioned and altered by FEMVTF to conform to FORTRAN 90 coding standards and to be hosted in
a DOS-based environment. These executables have been linked such that they run in the DOS window
on Windows 3.1, '95, or NT as well as from the standard DOS prompt. Interim releases of the PB
software (PB 1.0b, PB1.0, and PB 1.01) compatible with interim releases of PRZM3 were used for
sensitivity analysis of two leaching and two runoff data sets in the FEMVTF Phase |l pilot exercise. Two
additional data sets (one run off and one leaching) were analyzed using PB 1.2b3 , a version coded for
compatibility with the CEAM beta-release of PRZM3 (version 3.12 beta,
ftp://ftp.epa.gov/epa_ceam/wwwhtml/softwdos.htm).

PB additionally supports GLEAMS simulations. This aspect of PB is well-documented (Cryer, 1996;
Cryer and Havens, 1997) and, therefore, was not considered within FEMVTF.

FEMVT Evaluations and Results. Sensitivity analyses were conducted with three leaching and three
runoff data input sets were performed in accordance with guidance documentation presented in Appendix
4 for PB version 1.0 (data sets NC1L, NC2L, GA1R, and IA2R) or PB version 1.2b3 (data sets NC3L and
GAZR). Results of the PB analysis are summarized in Sections 6 and 7, with the details included in the
discussion of the appropriate data sets in Appendices 5 and 6.

5.5 Uncertainty Analysis

Monte Carlo analysis is a powerful tool for conducting uncertainty analysis on complicated models like
PRZM3.12. A review of Monte Carlo procedures, a guide to the selection of sampling distributions, and
an analysis of proper Monte Carlo procedures is found in Warren-Hicks and Moore (1998). The
FEMVTF Statistics Commiittee paid close attention to the procedural and statistical pitfalls of Monte Carlo
analysis. The following activities were implemented as an effort to ensure the correct implementation of
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the Monte Carlo analysis: 1) strict guidelines were developed for the selection of sampling distributions
for the input parameters (see Appendix 8), 2) numerous information sources, data bases, and experts
were identified and consulted in the course of selecting the input parameter sampling distributions, 3) a
rigorous evaluation of statistical correlation among the input parameters was undertaken (note: the
committee concluded that no statistical correlation exists between the parameters selected for
evaluation), and 4) a comprehensive sensitivity testing of the Monte Carlo outputs was implemented in an
effort to ensure results that are not overly dependent upon assumptions and interpretations.

Development of Crystal Ball® Monte Carlo Analysis Tool. A set of interface tools was built to
implement the Monte Carlo sampling and analysis techniques with the PRZM3.12 model. The software
chosen was the Crystal Ball® Pro package, manufactured by Decisioneering, Inc. (Denver, CO), along
with some additional FORTRAN programs. Crystal Ball® Pro is an add-on package to Microsoft Excel®
(Redlands, WA) which allows the user to define distributions and sampling methods for model inputs as
well as store the outputs from multiple-run modeling sets. As much of the functionality of Crystal Ball®
Pro is available to Excel®'s Visual Basic for Applications (VBA) programming environment, VBA scripts
were developed to set up and manage the Monte Carlo analysis. Figure 5-1 shows the general flow of
the interface system.

ED_005427A_00022434-00038



FIFRA Environmental Model Validation Task Force Final Report

Figure 5-1. Crystal Ball® Monte Carlo Analysis Tool Flowchart
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To set up a simulation set, the user first must define the inputs to be varied and the distribution types
describing its behavior. These distributions, termed 'assumptions' by Crystal Ball® Pro, were defined as
described in the preceding discussion. When a set of runs is initiated via a VBA script, Crystal Ball® Pro
samples (employing Latin Hypercube methodology) from the pre-defined assumptions to set the input
values for the current simulation. The script then writes the input values to a text file. An MS-DOS
process is then spawned, executing the p3fromxl FORTRAN program which spawns the text file and
inserts the updated input parameter values into an existing PRZM3.12 input file. The PRZM model is
then executed with the new file as input. The existing input files were the same files used in the Level 2A
analysis with the exception of the USLEC values. The Monte Carlo application was limited {o the fallow,
cropping and residue values for this parameter. The p3fxlout FORTRAN program parses the resulting
PRZM output file and the desired time series outputs are imported back into Excel® arrays, termed
forecasts' by Crystal Ball. The run number counter is then incremented and the loop repeated until the
desired number of simulations has been run.

By using the 'keep sorted values' option in Crystal Ball® Pro , the package keeps the input and output
values in their proper correspondence, so the statistical analyses described above could be done by
exporting the output and input forecasts from Excel®. In addition, convergence statistics were
accumulated for subsets of runs; this showed that about 500 total simulations were sufficient to describe
the variability of outputs as a function of the sampled input distributions. The intent of the analysis was
not to completely define the prediction uncertainty for any one parameter. Rather, the purpose was to
evaluate the relative spread in model predictions around the measured values. Therefore, the number of
iterations was not based on precisely estimating the prediction distribution, but to provide a sufficient level
of convergence and to bound the expected range of model predictions given the input sampling
distributions.

Quality Control/Quality Assurance. A two-tiered quality control check was performed for each
parameter of interest such as runoff volume, pesticide mass in runoff, bromide in soil pore-water, parent
s0il core concentrations at depth, etc. The quality control process was initiated to ensure that for the
comparative aspect of the analysis i.e. comparison of the Monte Carlo estimates versus measured data
that all data reflect exactly the measured values. Where data were extracted from study reports, analysts
reviewed and verified that electronic files created from the study data reflected exactly the study reports.
For the second tier, comparisons were made between the electronic field study summaries and the text
files used to input the field study data into SAS (SAS Institute, Cary, NC) using Monarch® (Datawatch
Corp., Wilmington, MA) to ensure that transcription errors would not occur. Where discrepancies
attributable to rounding were noted, the impact of the rounding differences on the analysis was assessed
and rectified if warranted. Where discrepancies were noted further investigation was initiated and the
errors were rectified where warranted. The process ensured that the files used in the SAS comparative
analysis did indeed reflect exactly the measured field data.
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6.0 Results of Runoff Simulations
The runoff model validation study was designed with the following objectives:

e To evaluate the performance of PRZM3.12 in predicting runoff volume, sediment loss, pesticide
losses with runoff and sediment and pesticide concentrations in runoff and sediment.

e Assess the value of using standard modeling guidelines in comparison with the subjective modeling
based on expert analysis.

¢ ldentify limitations of the current modeling procedures and techniques.

¢ Propose recommendations to refine modeling procedures and techniques that can lead to improved
predictions.

A total of nine runoff data sets were processed. These runoff studies represented a wide range of
hydrological, agronomical, and physiochemical scenarios. The field area for the runoff study sites varied
from 0.06 ha to about 7.0 ha. The slope range was 0.25 percent to about 5 percent. Soil texture varied
from silty clay loam to loamy sand. All the runoff study sites were under corn or cotton production except
one site, which was under sweet corn production. Also eight of these runoff sites were treated with
insecticides and one site with a herbicide. The half-lives of the chemical applied varied from 6 to 165
days and Kd value varied from 0.26 to 3200 mi/g for surface horizons. Table 6-1 describes the main
features of the runoff data sets and details are provided in Appendix 5.

Table 6-1. The main features of the runoff data sets.

Data Area | Slope | Soil Type | Crop Application Half- Kd*
Set (ha) | (%) Method' Life? (d) | (ml/g)
GA1IR 364 |35 Loamy Cotton | Aerial (L) 6 4
sand
GA2R |3.04 |3-55 |Sandy Sweet | Foliar (L) 8 0.43
loam Corn
IAZR 7.0 4.3 Silt loam Corn T-Band, foliar, and | 30 121
broadcast (G, L)
I1A3R 0.065 |56 Silt loam Corn T-Band, foliar, and | 30 121
broadcast (G, L)
1A4R 1.21 |29 Silt clay Com T-Band (G) 52 4200
loam
T-Band (G) 121 12
IAS5R 0.065 |2.8 Silt clay Corn T-Band (G) 52 3200
loam
T-Band (G) 121 10
KY2R |0.065 |4.2-5.2 |Siltlcam Corn T-Band (G)° 52 2200
T-Band (G)* 121 6
MD1R |0.50 |20 Silt loam Corn Ground spray (L) | 165 0.6
MS1R |21 0.25 VF sandy | Cotton |Foliar (L) 5.7 4.1
loam

1. Formulation type given in parentheses (G = Granular, L = Liquid)

2. Soil-specific half-life and Kd values for surface horizons reflect the values provided by the
registrants.

3. Appliedtoplot1and 2

4. Appliedtoplot3

The simulations for model validation study were completed in two phases. The first phase simulations
were termed as ‘site-specific simulations.” The input data for the site-specific simulations were
assembled using FEMVTF guidelines (Level 2 SOP Version 2.1, June 12, 1998), attached as Appendix 2.
The modelers were not involved in assembling the input data for site-specific simulations to eliminate any

ED_005427A_00022434-00042



FIFRA Environmental Model Validation Task Force Final Report 43

bias from the modeler. The next phase of the study termed as ‘calibration simulations’ was designed with
an overall objective of minimizing the differences between the observed and predicted values for various
output parameters using the guidelines presented in Appendix 3. In general, the calibration simulations
involved explorative modeling that ranged from calibration to hypothesis testing to a directed sensitivity
analysis (other than that of PB analysis). The calibration simulations were conducted based on specific
observations and expert analysis in order to: a) better represent actual study site conditions, 2) examine
variability in site properties, 3) address uncertainty in input parameters, or 4) to address inaccuracies in
measured data. The input parameters (mainly hydrological and environmental fate) were adjusted based
on the additional information obtained from a detailed review of runoff study reports made available to the
modeler after the site-specific simulations. The calibration simulations were performed for all runoff sites
except for GA2R and MS1R sites. The runoff sites GAZR and MS1R did not undergo the calibration work
mainly due to time and budgetary constraints. A detailed description of the analysis for the calibration
simulations for each individual data set is provided in Appendix 5.

The major output variables considered for model evaluation included runoff volume, sediment vield,
pesticide mass and concentrations in runoff and sediment. For a simple statistical evaluation of the
model's performance, ratios of predicted and observed values (predicted value + observed value) were
calculated for each output parameter (runoff volume, sediment loss, and pesticide mass and
concentrations in the runoff and sediment). These ratios were calculated for individual events as well as
for the cumulative values of output parameters (average for concentrations in runoff and sediment) during
the study period for each runoff data set.

Alternatively, the scatter plots were prepared for the pooled (all the runoff data sets grouped together)
observed and predicted values for a given output parameter (e.g., runoff volume) to evaluate the overall
variability between the observed and predicted data. These plots also show the quartile ranking of the
events (based on measured data) allowing an assessment of the prediction accuracy as a function of
relative magnitude of the event.

Site-Specific Simulations. The predicted vs. observed ratios based on individual events and cumulative

values are presented in Table 6-2 and Table 8-3, respectively, for site-specific simulations. Figure 6-1
presents the scatter plots for the site-specific simulations.
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Table 6-2. The ranges of ratios (predicted value + observed value) based on individual events for site-
specific simulations.
Site Runoff | Sediment Pesticide Pesticide Total Pesticide | Pesticide
Loss Mass in Mass in Pesticide Conc. in Conc. in
Runoff Sediment Mass in Runoff Sediment
Runoff and
Sediment
GAMTR | 06to64 | 0.2t01.3 0.7tc 1.2 ! 0.3t01.3
GA2R | 04t044 0.9t09.0
IA2R | 08to3.8 | 0.001to 0.41t029.0 0.007 to 0.02t0 8.5
3.5 7.2
IA3R 0.28to 0.08to 13 0.04 10 3.3 0.04t043 | 0.04t07.8 | 0.14t026 | 0.5t06.8
1.5
1A4R 0.01to 0.003 to 0.0to 2.1 00to27
0.8 0.7
0.07t0 1.8 231058
IA5R 0.01to 0.0001 to 0.0t0 0.89 00to1.4
0.8 11.8
0.0t00.7 0.0to 8.7
KY2R?* | 08t024 | 041023 06tc5.8 061026
2410860 2.8to 3.1
MD1R | 0.91t0 32 23t07.4 0.0to4.4
MS1R 1 2.3 0.3 0.3

1. Empty boxes indicate no measured data available for comparison
2. All data pooled for three subplots.
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Table 6-3. The ratios of predicted and observed values (predicted value + observed value) based on
cumulative values (average for concentrations) for site-specific simulations.
Site Runoff | Sediment Pesticide Pesticide Total Pesticide | Pesticide
Loss Mass in Mass in Pesticide Conc. in Conc. in
Runoff Sediment Mass in Runoff Sediment
Runoff and
Sediment
GA1R 1.47 0.28 1.00 ! 0.39
GAZR 2.03 1.43
IAZR-
1992 1.63 2.56 2.64 1.75 2.03 3.32 3.84
1993 1.19 0.23 3.99 0.32 0.50
IA3R-
1992 1.45 7.96 1.71 3.78 2.66 1.33 1.98
1993 1.02 0.93 0.66 0.51 0.55 0.31 1.20
IA4dR 0.34 0.25 0.38 0.83
1.01 2.73
0.15° 0.15°
IASR 0.57 0.25 0.18 0.27
0.40 0.83
KY2R-
plot 1 1.41 1.32 1.00 0.63
plot 2 . 0.78 2.29 1.70
plot 3 1.24 0.76 4.1 2.90
MD1R-
1990 3.82 3.70 0.41
1991 4.75 3.67 0.83
MS1R 1.00 2.34 0.30 0.30

1. Empty boxes indicate no measured data available for comparison.
2. Value for bromide

The range of ratios given in Table 6-2 demonstrates that the site-specific runoff predictions were
generally within one order of magnitude of observed values for all the data sets except for MD1R. The
runoff volumes were consistently over predicted for MD1R site. The predicted sediment losses were
within one order of magnitude of observed sediment losses for GA1TR, IA3R, KY2R, and MS1R data sets.
However, sediment losses were under predicted significantly (mainly due to under prediction of runoff) for
IAZR, IA4R, and IASR. The values for pesticide mass in runoff were also roughly within one order of
magnitude of observed values, except for IA4R and IA5R data sets. The pesticide mass in runoff was
usually under predicted for IA4R and IA5R sites. The measured pesticide mass in the sediment was
available only for two runoff sites (IA2R and 1A3R) and predicted values for pesticide mass in sediment
were within one order of magnitude of observed data except for two events (IA2R day 181 and IA3R day
196). The predicted pesticide concentrations in runoff and sediment were also within one order of
magnitude of measured data except for few events.

The predicted vs. observed ratios derived for cumulative values represented a much narrower band
around the ideal value of 1.0 in comparison with those derived for individual events. In general, the
ranges for predicted vs. observed ratios were 0.3 to 5.0 for runoff volume, 0.2 to 8.0 for sediment loss,

0.2 to 4.0 for pesticide mass in runoff, 0.3 to 4.0 for pesticide mass in sediment, 0.5 to 2.7 for total
pesticide mass in runoff and sediment, 0.2 to 3.0 for pesticide concentration in runoff and 1.0 to 4.0 for
pesticide concentration in sediment. Thus, model predictions based on cumulative values (over the entire
study period) were in better agreement with measured data than those based on individual events.
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The plots presented in Figure 6-1 confirm that predicted values were usually within one order of
magnitude of measured values {most data-points falling within 10X and 0.1X lines) for all output
variables. Figure 6-1 also shows that the variability (degree of scatter around 1X line) between the
observed and predicted values of an output variable usually decreased with the increasing magnitude for
runoff volume, pesticide mass in runoff, (excluding bromide data), and pesticide concentrations in runoff.
In other words, the values for predicted vs. observed ratios (Table 6-2) beyond one order of magnitude
are usually associated with very small events. However, this trend was not very clear for sediment loss,
pesticide mass in sediment and pesticide concentration in sediment.

Following are some general observations made from the site-specific simulation results:

1. Overall model predictions for site-specific simulations are within one order of magnitude (0.1x to 10x)
of measured data when the individual events are analyzed. However, when the cumulative values
(values summed over the study period) are compared, usually there is better agreement between the
observed and predicted data than that based on individual events.

2. More accurate predictions of runoff and erosion generally lead to more accurate predictions of
chemical losses with runoff or sediment, indicating reasonable representations of environmental fate
and transport processes in the model.

3. Runoff predictions are generally in better agreements with measurements than sediment predictions.
The more scattered sediment predications (Figure 8-1) indicate greater uncertainty involved in the
parameterization of the soil erosion module. For example, the regional rainfall distribution - a non-site
specific parameter, used in the erosion submodel for calculating the peak runoff likely does not
accurately represent the site specific rainfall intensity. Another source of potential uncertainty
associated with erosion prediction is capturing the seasonal variations in the crop cover (C) and
Manning’s roughness (N) factors.

4. The predictions of the larger rainfall events are generally closer to the measurements than the
smaller events (e.g., IASR). This can be largely attributed to the inherent limitations of the SCS curve
number method which is an empirically derived rainfall-runoff model with no consideration for soil
water dynamics or rainfall intensity. Also the current parameterization of runoff curve number (a
single curve number is used to represent the entire cropping season) does not represent the
hydrologic variation associated with various crop growth stages within the ‘cropping’ period.

Calibrated Simulations. The predicted vs. observed ratios for calibrated simulations based on individual
events and cumulative values are presented in Table 6-4 and Table 6-5, respectively. Figure 6-2
presents the scatter plots of observed and predicted values and quartile rankings (as described for Figure
6-1) for calibrated simulations.
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Table 6-4. The range of ratios (predicted value + observed value) based on individual events for

calibrated simulations.

Site Runoff Sediment Pesticide Pesticide Total Pesticide | Pesticide
Loss Mass in Mass in Pesticide Conc. in Conc. in
Runoff Sediment Mass in Runoff Sediment
Runoff and
Sediment
GA1MR | 051t04.6 04tc1.7 0.7t014 ! 02t01.8
GAZR
IA2R | 0.08t029 |0.002t01.7 | 02t0c23.0 | 0.04t04.1| 007tc54
IA3R | 014t01.3 | 0.05t05.7 0.03to 4.1 0.11t0 23 0.09to55 0.23t04 04to15
1A4R 0.59to 0.3t0 257 0.2t0 5.1 0.3t05.2
0.99 04t01.7 0.8t01.7
IABR | 0.7t009 | 0.2t010.2 | 0.08t0 0.89 0.1to14
0.0t02.38 0.0t034
KY2R | 0.8to14 05012 0.7t0 3.6 051027
2 1.1t02.4 1310 1.8
MD1R | 0.17t0 13 03t00.86 0.0t026
MS1R

1.

Empty boxes indicate no measured data available for comparison
2. All data pooled for three subplots.

Table 6-5. The ratios of predicted and observed values (predicted value + observed value) based on
cumulative values (average for concentrations) for calibrated simulations.

Site Runoff | Sediment | Pesticide Pesticide Total Pesticide | Pesticide
Loss Mass in Mass in Pesticide Conc. in Conc. in
Runoff Sediment Mass in Runoff Sediment
Runoff and
Sediment
GA1R 1.21 0.82 1.15 ! 0.54
|A2R-92 1.36 1.50 2.20 1.18 1.49 3.32 7.08
IA2R-93 0.90 0.32 3.01 0.30 0.43
IA3R-82 1.21 4.04 1.48 2.47 1.4 1.37 3.76
IA3R-93 0.80 0.84 0.79 1.31 1.16 0.43 2.23
[A4R 0.74 0.53 0.62 1.07
0.94 1.27
0.39° 0.31°
IABR 0.75 0.44 0.33 0.42
0.38 0.50
KY2R
plot 1 1.16 1.19 0.85 0.72
plot 2 1.03 0.60 1.82 1.88
plot 3 1.00 0.61 1.71 1.61
MD1R
1990 1.19 0.80 0.31
1991 1.68 0.27

1.

Empty boxes indicate no measured data available for comparison.
2. Value for bromide.
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The calibrated simulations generally resulted in improved predictions as evident from narrower range of
predicted vs. observed ratios calculated for calibrated simulations (Table 6-4) than for site-specific
simulations. As in the case of site-specific simulations, the predicted vs. observed ratios derived for
cumulative values also indicated a better agreement between predicted and observed data than that
based on individual events. Also, the predicted vs. observed ratios based on cumulative values for
calibrated simulations indicated a substantial improvement over site-specific results for all output
parameters except for average pesticide concentration in runoff and sediment. This was somewhat
expected because the calibrated simulations effort focused primarily on improving the predictions for
runoff volume, sediment losses, and pesticide masses in runoff and sediment. This procedure did not
always result in improved predictions for pesticide concentrations in the runoff and sediment.

Figure 6-2 also shows a reduced variability between the observed and predicted values (less data scatter
around 1X line) in comparison with the variability associated with the site-specific predictions (Figure 6-1)
for all output parameters.

The fundamental difference between the site-specific and calibrated simulations lies in whether the model
parameters are kept independent of experimental data during simulation (such as in site-specific
simulations) or are derived from parameter adjustments to better fit the data (calibrated simulations). The
conceptual basis of a model is truly tested only when the model can predict a set of measurement data
with all parameter values determined independently of the data being predicted. However, since
environmental processes are always interconnected and often site-specific, determining parameter
values truly independently is difficult. As evident from the site-specific and calibrated simulation results,
parameter calibration based on site-specific measured data, and expert analysis is essential even though
it may not be sufficient to test the model validity.

A detailed sensitivity analysis was also performed for three runoff data sets (GA1R, IAZR, and GAZR)
using the Plackett-Berman sensitivity analysis tool (Appendix 4). The PB analyses indicated that runoff
curve numbers, bulk density, partitioning coefficient, and degradation rates were among the most
sensitive input parameters affecting pesticide losses in runoff and sediment (Table 6-6).

Table 6-6. Results of Plackett-Berman analyses for runoff expressed as relative importance of sensitive
components.

GA1R (foliar) 1A2R (foliar) 1A2R (soil) GAZR (foliar)
Runoff Erosion Runoff Erosion Runoff Erosion Runoff Erosion

relative importance of sensitive components

RO curve number 1 25 26
RO curve number 2 85 71 73 30 37 32 21
Kd (layer 1) 8 5 23 23 63 6
Decay rate (layer 1) 9 4 18 6 15 14
Decay rate on foliage 7 12 4 4
Bulk density (AWHC) 6 4 14 22 17
Management factor 2 5 8 4
Plant uptake factor 5 7 3 o]

Monte-Carlo simulations were also performed with IA2R and GA1R to evaluate the effect of uncertainty in
the input parameters on the model predictions (Appendix 8). The data set IA2R contained a total of
seven runoff events. All measured values of runoff volume fell within the interquartile range (between the
25" and 75" percentile of the prediction distribution) of the model predictions, indicating that the model
was very reliable. For sediment yield, measured values fell within the interquartile range for three events,
within the bounds of the distribution for two events, and outside the bounds of the distribution for two
events. For dissolved pesticide runoff mass, five measured values fell within the interquartile range, and
the remaining measurements fell within the bounds of the distribution. For pesticide mass in sediment,
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three measured values fell within the interquartile range of the predictions, three fell within the bounds of
the predictions, and one fell outside the bounds of the model predictions. At GA1R pesticide runoff mass
was the only value measured. For each of the four runoff events for which the measurements were
available, the measured value fell within the interquartile range of the model predictions.

Cold Simulations. Cold modeling of the runoff transport was performed for only one data set (GA1R)
using PRZM3 (Version 3.12, April 21, 1998) and the guidelines prepared for cold simulations {Parker, R.,
PRZM Inputs - Level One FEMVTF Validation. Revision 11 May, 1999). The predicted vs. observed ratios
for cold simulations based on individual events and cumulative values (for runoff volume, sediment loss,
pesticide mass in runoff, and pesticide concentrations in runoff) are presented in Table 6-7.

Table 6-7. The ranges of ratios (predicted value + observed value) based on individual events and
cumulative values for cold simulations performed with GA1R (pesticide concentrations in sediment were
not measured in this data set).

Comparison Runoff | Sediment | Pesticide Mass | Pesticide Conc.
Loss in Runoff in Runoff
Individual Events 0.5t02.8] 0.051t00.3 0.4 t0 120.0 0.4t042.0
Cumulative Values 1.0 0.1 3.3 1.6

Comparisons of cold simulation results and observed values for runoff volume indicated that predicted
results were within one order of magnitude of observed values. However, the sediment yield was
consistently under predicted indicating a need for refined/modified erosion parameters. The pesticide
mass and concentrations in runoff were substantially over predicted (e.g., 3 to 120 times). The over
estimations in the cold simulations were likely caused by the highly conservative estimates of foliar and
soil degradation rates for the simulated chemical.

Thus, the general observations from the cold simulations are: a) the cold simulations provide reasonable
estimates of the runoff volume; b) the results for sediment yield and chemical mass and concentration in
runoff indicate a need for improved parameterization of erosion and chemical environmental-fate
parameters.

Conclusions. The overall conclusions drawn from the site-specific and calibrated simulations are:

e The overall model predictions for individual events are usually within one order of magnitude of
measured data. When the cumulative or average values (values summed or averaged over the study
period) are compared, the agreement between the simulated and measured values is improved. For
example, predicted pesticide concentrations in the runoff (averaged over the study period) are
approximately within a factor of 0.3x-3x of measured values for both site-specific and calibrated
simulations.

e More accurate predictions of runoff and erosion generally lead to more accurate predictions of
chemical losses with runoff and sediment indicating reasonable representations of environmental fate
and transport processes in the model.

¢ The variability between the predicted and measured values decreases with the increase in magnitude

or event size. For example, the variability of more than ‘one order of magnitude’ is usually associated
with very small events.
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Recommendations. Several recommendations are proposed below that would improve the agreement
between the simulations and the measurements. However, some of these recommendations may have
little relevance in a standard regulatory scenario in which input parameters are usually fixed and event by
event match between simulated and measured results is not the objective.

(1)  Although observed and predicted hydrological balances could not be compared (mainly due to a
lack of comprehensive measured data), there is a general concern about the model’s ability to
adequately represent evapotranspiration (ET). ET can affect soil moisture, which can in turn affect
the relative daily CN on a runoff day. To improve the predictions for runoff volumes {and sediment
losses) hydrologic balance calculations should be considered. Soil moisture and bulk density may
also impact ET, and their significance in ET calculations may need to be investigated. In addition,
the model needs to account for upward water movement because of the ET in the upper soil profile.
The ET extraction depth in the topsoil is somewhat arbitrary and upward water movement is not
considered in PRZM3. Evaluating the effects of soil water content at field capacity and soil water
content at the wilting point on ET and runoff volume would be useful in better representing the soil
water dynamics and overall hydrological balance.

(2) Although some variability is expected between observed and predicted soil loss values due to
empirical nature of soil loss equations, the predictions may be improved by a better representation
of storm intensity in the soil erosion submodel. Currently the peak runoff rates in the erosion model
are derived from generalized regional rainfall distributions. A better representation of the rainfall
distribution may be helpful in improving the soil loss predictions for individual events.

(3) The latest PRZM-3 (Version 3.12) allows multiple sets of input values for crop cover (C) and
Manning's surface roughness coefficients (N). A more detailed description of C and N factors
during the cropping period represents the dynamic nature of crop cover and roughness and
improves the sediment loss predictions.

(4) A seasonal variation in runoff curve numbers (similar to C and N factors) may be helpful in
representing the effects of changing crop growth stages on predicted runoff. Also, further
investigations are warranted for determining the source of discrepancies and improving the model
predictions for smaller runoff events.

(5) The actual time and extent of maximum canopy coverage may vary depending on how well the crop
is growing. The extent of maximum canopy and time of maximum canopy, in turn affects the
interception and therefore pesticide losses with runoff and sediments. The time and extent of
maximum canopy cover calculated from measured canopy cover data can improve model
predictions for interception and washoff. The maturation date in PRZM input sequence should
represent the time of reaching maximum canopy cover for a given crop.

(6) Alarge amount of uncertainty is also associated with the physiochemical properties. The selection
of these properties by the registrant remains subjective. A standard procedure may need to be
developed for determining the physiochemical properties for the modeling purposes. The following
steps may help improving the fate and transport predictions: a) investigating and representing the
effects of time and temperature on half-life and Koc on chemical fate and transport and b)
investigating how well the lab values can be extrapolated to the field situation.

(7) The non-uniform extraction model currently used in PRZMS3 does not account for seasonal
variations in soil condition and texture. For example, a freshly tilled porous soil would have different
pesticide and extraction characteristics than a compacted soil. There can be a future option in
PRZM3 to allow the extraction curve to vary by site or over time.

(8) Site specific situations (e.g., a runoff event spanning over a period of multiple days) need to be
carefully represented in the simulation by adjusting the available input/output parameters. Also, the
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environmental fate parameters (e.g. half-life and Koc) need to be carefully selected for specially
formulated chemicals to represent a realistic environmental fate and transport of these chemicals.

(9) The sampling inaccuracies should be carefully noted when analyzing the discrepancies between
the measured and predicted results. For example, the study report for the |IA2R site indicated
termination of sampling due to inundation of a primary sampling flume during the runoff eventon JD
185-186 in 1993 which would make the observed value suspect for this date.
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Figure 6-1. The scatter plots of predicted and observed values for site-specific simulations.
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Figure 6-2. The scatter plots of predicted and observed values for calibrated simulations.
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7.0 Results of Leaching Simulations

The capability of PRZM 3.12 to simulate the leaching behavior of agricultural chemicals was evaluated
with the following objectives:

e To determine the performance of PRZM 3.12 in predicting the rate of ground water recharge, based
on the comparison of the fate and transport of a non-adsorbed tracer (bromide ion) through the
unsaturated zone with measured concentrations in soil and soil pore-water.

¢ To determine the performance of PRZM 3.12 in predicting the fate and transport of a range of
pesticides through the unsaturated zone by comparison with measured concentrations in soil and soil
pore-water.

¢ To assess the relative results of performing leaching assessments using three types of input values:
regulatory or “worst-case” (Level 1) input values, standardized input values based on expert
judgment and site-specific information (Level 2) and calibrated input values (Level 2a).

¢ To identify limitations of current modeling procedures and algorithms.

s To propose recommendations for the refinement of modeling procedures and algorithms in order to
provide improved prediction capabilities.

A total of nine ground water studies were evaluated. These studies represent a wide range of hydrologic,
edaphic and agronomic conditions in agricultural settings located in California, Florida, Georgia, Kansas,
and North Carolina. The soil texture at these sites was predominately hydrologic group A soils (typically
sand or loamy sand, with a minimum infiltration rate of 8-11 mm/hr). Two sites had less vuinerable loamy
sand or sandy loam soils that were classified as hydrologic group B/C or C.

A wide range of crops was grown on the test plots including alfalfa, citrus, sweet corn, peanuts, wheat,
soybeans and cotton. The soil degradation half-life of the agricultural chemicals ranged from 8 to 365
days and the sorption coefficient (Kd) varied from 0.088 toc 0.50 ml/g for the surface horizon. Table 7-1
describes the main features of the leaching data sets.

Table 7-1. The main features of the leaching data sets.

Data Soil Soil Type | Hydrologic | Crop Application | Half-Life' | Kd'

Set | Association Group Rate (d) {ml/g)
(kg ai/ha)
CA1L |Hilmar Loamy sand B Alfalfa 0.848 115 0.186
FL1L [Astatula Sand A Citrus 5.6 17.5 0.088
GA1L | Kershaw Fine sandy A Sweet 12.6 8 0.176
loam cormn

GA2L | Ardilla, Mixture, B/C Peanuts 2.49 69 0.42

Clarendon ~sandy loam 2.35 20 0.1

KS1L |Las Animas | Sandy loam C Wheat 0.074 21 0.50
NC1L |Kenansville |Loamy sand A Soybean 0.56 100 0.361
NC2L | Tarboro Loamy sand A Soybean 0.14 47 0425
NC3L | Tarboro Loamy sand A Cotton 0.14 14 0.091
NC4L | Tarboro Loamy sand A Soybean 0.56 365 0.35

1. Site-specific half-life and Ky values for surface horizons reflect the values provided by the
registrants.

Three types of simulations were performed for the model validation study. The first type of simulation
was termed a cold (Level 1) simulation and represented the type of conservative evaluation performed by
the USEPA for regulatory evaluation of the leaching potential of a pesticide. This predictive approach
followed a SOP developed by the USEPA/EFED personnel (Parker, R., PRZM Inputs - Level One
FEMVTF Validation. Revision 11 May, 1999) and used extreme input values for some of the input
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parameters to generate conservative (sometimes called “worst-case”) estimates of environmental
concentrations due to leaching. This approach was expected to generate simulated values as high or
higher than the experimental results obtained in prospective ground water studies conducted in highly
vulnerable settings. Since only a single “worst-case” combination of input values is simulated in this
approach, the probability of actually observing the simulated concentrations is not known.

Due to a combination of logistical problems in completing the cold modeling SOP as well as budgetary
and time constraints, cold modeling was only performed for NC4L.. This data set was selected due to the
fact that it contained the highest ground water concentrations of the nine data sets being evaluated and
thus provided the best opportunity to compare the results of progressively refining the accuracy of
modeling through the three levels.

Site-specific simulations were intended to represent the results of modeling each ground water study by
using standardized “expert judgment” concerning selection of chemical, soil and agronomic parameters.
The input data for site-specific simulations were assembled using guidance developed by FEMVTF for
uncalibrated or “expert judgment” modeling (Level 2 SOP, Version 2.1, June 12, 1998), attached as
Appendix 2. The only study-specific parameters that were included in the site-specific modeling were the
rate(s) and date(s) of chemical application and the daily climatic data which were collected at each study
site. The resulting site-specific input data sets were then run and post-processed to provide assessment
of the hydrology based on bromide fate and transport as well as the fate and transport of the pesticide in
soil and soil pore-water at various depths.

The final type of modeling was termed as ‘calibrated simulations’ (Level 2a) and was designed with the
overall objective of minimizing the differences between the observed and predicted values by varying key
input parameters within experimentally observed ranges. Calibrated modeling work involved exploratory
modeling that ranged from calibration of key parameters to sensitivity analysis using either simple
variation of input parameters (Appendix 3) or a formal tool such as Plackett-Burman analysis (Appendix
4).

The site-specific simulations were conducted based on specific observations and expert analysis in order
to:

better represent actual study site conditions
examine variability in site properties
address uncertainty in input parameters
address inaccuracies in measured data

Key input parameters (mainly hydrological and environmental fate) were adjusted based on the additional
information obtained from a detailed review of leaching study reports made available to the modeler after
the site-specific simulations were completed. Calibrated simulations or sensitivity analyses were
performed for all leaching studies except for two. The leaching sites CA1L and GAZ2L did not undergo
calibrated modeling or sensitivity assessment primarily due to either time and budgetary constraints or a
low benefit from improving the fit obtained in site-specific modeling. A detailed description of the
calibrated modeling analysis for each study is given in the respective leaching chapters.

For each level of modeling, the major output variables considered for model evaluation included
hydrology parameters (precipitation, evapotranspiration, runoff, erosion and recharge), pesticide fluxes
and transformation rates (runoff, erosion, volatilization, plant uptake, foliar dissipation, degradation and
leaching) as well as concentrations of bromide and pesticide in soil and soil pore-water over time. For a
simple statistical evaluation of the model's performance, ratios of simulated and experimental values
(simulated value / experimental value) were calculated for concentration values in soil and soil pore-water
over time. These ratios were calculated for both bromide and pesticide concentrations for depths and
time points for which experimental data were reported.

ED_005427A_00022434-00055



FIFRA Environmental Model Validation Task Force Final Report 56

One of the obstacles in comparing simulated and experimental leaching data arises from the fact that
while modeling can provide both concentration data (mass per volume) and flux data (mass passing
through a surface or plane over time), field studies typically provide only concentration data. In addition,
annual-average concentration values can readily be calculated from the daily values produced by
modeling but time-averaged values are less accurately determined from the monthly sampling events
used in most ground water studies.

For regulatory purposes, the primary endpoints are the peak and annual average concentrations of
pesticide in ground water. The rate of travel (time of appearance) of peaks is generally of secondary
importance. To provide simple but meaningful comparisons between the simulated results and the
experimental data, peak concentrations predicted by the model and observed in field monitoring were
compared for four endpoints: bromide in soil, bromide in soil pore-water, pesticide in soil and pesticide in
soil pore-water. Details of these comparisons for each sampling event are provided in the individual
chapters for each study site.

A summary of the mass balances obtained in each of the leaching simulations is provided in Table 7-2.
Due to lack of degradation and volatility, the only two dissipation processes for bromide were plant uptake
and leaching. For all of the leaching simulations, the PRZM plant uptake parameter (UPTKF) was set at
1.0, the default value recommended in the PRZM manual, which implies that the chemical freely enters
plant roots along with transpired water. The resulting plant uptake of bromide that was simulated varied
dramatically, ranging from 2-7% in three settings to more than 50% in three settings. For poorly sorptive
compounds such as those included in this assessment, the primary factors which influence the plant
uptake are the rooting depth (AMXDR) and the recharge that occurs in the months immediately following
application. Deeper rooted crops such as alfalfa and citrus can abstract water and bromide from a
greater depth than more shallowly rooted crops. In addition, more arid climates, such as California and
Kansas, have lower rates of ground water recharge following application which keeps the bromide in the
root zone for a longer period of time than in settings with more spring and summer recharge. Based on
numerous published studies, typical uptake of bromide into agronomic crops ranges can easily range up
to 50% or more which supports the results obtained in this exercise.
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Table 7-2. Summary of mass balances for bromide in leaching simulations.

Mechanism CA1L | FL1L | GAML | GA2L | KS1L | NCML | NC2L | NC3L | NC4L

Drift 1.00 1.00 1.00 1.00 1.00 ND 1.00 1.00 1.00
Runoff 0.00 0.03 0.03 0.10 1.31 ND 0.00 0.00 0.00
Erosion 0.00 0.00 0.00 0.00 0.00 ND 0.00 0.00 0.00

Plant Uptake 76.20 | 58.05 16.78 1.41 52.53 ND 2.78 48.07 6.76

Degradation 0.00 0.00 0.00 0.00 0.07 ND 0.00 0.03 0.05
in 1 m of soil

Foliar 0.00 0.00 0.00 0.00 0.00 ND 0.00 0.00 0.00
dissipation

Volatilization 0.00 0.00 0.00 0.00 0.00 ND 0.00 0.00 0.00

Leaching 22.81 40.92 82.19 97.49 45.09 ND 96.22 50.91 92.19
below 1 m

Remaining in 0.00 0.00 0.00 0.00 0.00 ND 0.00 0.00 0.00
soil

ND = not determined

An overview of the comparisons for the peak bromide concentrations in soil and soil pore-water are
presented in Tables 7-3 and 7-4. In general, site-specific modeling using PRZM 3.12 provides a very
reasonable fit to both soil and soil pore-water data for bromide. The experimental soil data was typically
obtained from the soil surface to a maximum depth of 120 cm. The simulated bromide concentrations in
s0il generally agree with the experimental data within a factor of 3X (i.e. the ratios of simulated to
experimental data range from 0.33 to 3.0). Many of the fits were within a factor of 2X. The only notably
poor fit resulted at deeper soil depths in NC3L where the experimental concentrations of bromide in soil
declined rapidly to very levels less than 0.05 ppm at depths of 90 to 120 cm. The simulated bromide
concentrations also declined with depth but not as rapidly as the experimental data.

Table 7-3. The ranges of bromide soil concentration ratios (simulated value / experimental value) for
leaching simulations.

Site | Ratio of Peak Soil Concentrations | Depth Interval for Data | Modeling Level
{simulated / experimental) {cm)
CAI1L 0.19-0.74 0-860 site-specific
FLAL 0.12-3.05 0-300 site-specific
GA1L 0.47 - 1.11 0-120 site-specific
GA2L 0.30-1.11 0-120 site-specific
KS1L site-specific
NC1L site-specific
NC2L site-specific
NC3L 0.4-73.71 0-120 site-specific
NC4L 047 -3.24 0-120 cold
040-271 0-120 site-specific
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Table 7-4. The ratios of bromide soil pore-water concentrations (simulated value / experimental value)
for leaching simulations.

Site Ratio of Peak Soil Pore-Water Depth Interval for Modeling Level
Concentrations Data
(simulated / experimental) {cm)
CA1L 0.01-0.12 90 - 360 site-specific
FL1L
GA1L 0.74-1.26 90 — 360 site-specific
GA2L 1.96 - 3.92 150 - 270 site-specific
KS1L 0.39-1.77 90 - 198 site-specific
NC1L site-specific
NC2L 0.77 - 1.82 90 - 360 site-specific
NC3L 0.33-1.66 90 - 360 site-specific
NC4L 1.38 - 3.11 90 - 210 cold
1.59 - 3.36 90 - 210 site-specific

Blank box indicates no data available for comparison

The simulated concentrations of bromide in soil pore-water also showed excellent agreement with
measured data with general agreement typically within a factor of 3X. The measured soil pore-water data
was obtained from suction lysimeters installed at soil depths ranging from 90 to 360 cm so this data
corresponds to a longer time of travel than the soil data. The slightly different input values determined for
NCA4L. in the cold and site-specific modeling produced slightly different simulated bromide concentrations
with slightly better agreement in soil concentrations but slightly worse agreement in bromide soil pore-
water. Overall, the capability of PRZM 3.12 of simulating the fate and transport of bromide in the nine
ground water studies was very reasonable.

One of the values of using bromide in the ground water studies is to obtain information on the rate of
ground water recharge. The simulated recharge rates for the nine studies varied from a low of 29% of
applied rainfall and irrigation in California and Kansas to a high of 58% in North Carolina. The mean
simulated recharge rate was 45% of applied water. These values agree well with expected recharge
rates for shallow ground water in vulnerable agronomic settings.

The simulated mass balances for the pesticides in the nine leaching studies are summarized in Table 7-5.
Based on this summary, the major dissipation mechanisms for the various pesticides were degradation
and plant uptake with these two mechanisms totaling 58% to 98% of all dissipation (average of 88%).
Similar to the plant uptake of bromide, the uptake of pesticides was also significant, ranging from 7 to
51% of the applied chemical. Plant uptake is expected to be highest for pesticides with moderate to long
half-life values which are weakly sorbed to soil, a description which fits most of the test chemicals in the
cited leaching studies. However, this uptake is higher than would be expected on the existing limited
data, probably due to the simplicity of the uptake model used in PRZM. Foliar dissipation of the pesticide
was significant for the pesticide in study GA1L., accounting for 39% of the overall dissipation of the
chemical.

The simulated runoff and erosion losses were minimal for the leaching studies which agrees well with the
fact that these studies were typically sited on flat sites on highly permeable hydrologic group A soils. The
two sites with runoff of approximately 0.6% were conducted on hydrologic group B or C soils.

The fraction of applied pesticide that was simulated to leach below a depth of 1 m varied between 0%
(KS1L) and 36% (NC4L) with a mean value of 8%. The studies with the highest leaching percentages
(CA1L, NC1L and NC4L) all had application rates of more than 0.5 kg ai/ha, sorption coefficients of 0.36
g/ml or less and soil half-lives of 100 days or more. The screening model SCI-GROW suggests that the
ground water detections resulting from these combinations of use rate, sorption and half-lives would be

ED_005427A_00022434-00058



FIFRA Environmental Model Validation Task Force Final Report 59

expected to result in ground water detections of 3 ug/L. or more which agrees with the results obtained
from the deepest lysimeters in these studies.

Table 7-5. Summary of mass balances for pesticide in leaching simulations.

Parameter CA1L | FL1L | GA1L GA2L KS1L | NC1L | NC2L | NC3L | NC4L
Drift 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Runoff 0.00 0.03 0.16 0.59 0.58 1.08 0.00 0.10 0.00 0.00
Erosion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Plant Uptake | 50.80 | 4064 | 695 | 33.05 | 28.86 | 30.03 | 46.28 | 23.20 | 31.08 | 48.47

Degradation 36.61 | 55.02* | 5067 | 6265 | 68.87 | 67.89 | 36.11 | 71.77 | 64.31 14.86
in 1 m of soil

Foliar 0.00 0.00 38.96 | 0.00 0.00 0.00 0.26 0.00 0.00 0.00
dissipation

Volatilization 0.00 0.00 1.52 0.03 0.00 0.00 0.00 0.02 0.00 0.00

Leaching 11.59 3.31 0.74 0.73 0.58 0.00 16.35 3.90 3.60 35.67
below 1 m

Remaining in 0.00 0.00 0.00 1.95 0.1 0.00 0.00 0.00 0.00 0.00
soil

*in top 3.6 m of soil

A summary of the ratios of simulated to experimental results for peak pesticide concentrations in soil is
presented in Table 7-6. The simulated soil concentrations of pesticide varied between extreme under
prediction (e.g. ratio near 0) to up to 86X over prediction.

Table 7-6. The ranges of pesticide soil concentration ratios (simulated value / experimental value) for
leaching simulations.

Site Ratio of Peak Soil Concentrations Depth Interval for Modeling Level
(simulated / experimental) Data
(cm)
CAI1L 0.56-1.21 0-60 site-specific
FL1L 0.05-0.17 30 - 300 site-specific
GA1L 1.09-85.6 0-120 site-specific
GA2L 0.09-1.70 0-120 site-specific
0.02-1.02 15 - 120 site-specific
KS1L 0.003 -0.78 0-90 site-specific
NC1L 0.8-<3.39 0-220 site-specific
NC2L 0.09-0.76 0-120 site-specific
NC3L 0.45-<3.93 0-120 site-specific
NC4L 0.49-12.04 0-120 cold
047 -7.08 0-120 site-specific

A graphical plot of the ratios listed in Table 7-6 is presented in Figure 7-1. In this figure the absolute
values of the lowest and highest ratios from each study have been rank ordered and analyzed to provide
an estimate of the median expected agreement. For pesticide concentrations in soil, the simulated
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values are expected to be within 3X of experimental values up to 50% of the time. 80% of the time the
values are expected to be within a factor of 10-11X. Less than 10% of the time the simulated results are
expected to be relatively poor with ratios of 100X or more.

Figure 7-1. Accuracy of simulated pesticide concentrations in soil (since this is a plot of the absolute
value of the log of the simulated/experimental data, the accuracy of the simulation is evaluated without
regard to whether the result was an over-prediction or under-prediction).
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The simulated concentrations of pesticide in soil pore-water also varied widely, with a clear bias toward
under prediction (Table 7-7). The highest over prediction was a factor of 16X for NC3L while four studies
had significant under prediction of pesticide residues in soil pore-water.

To estimate the decline in degradation rate with depth in the soil profile, the site-specific SOP specified
that the soil profile be divided in thirds with degradation half-lives of 1X, 2X and 3X, respectively with
depth. This approximation reflects the general recognition that the rate of degradation declines with
depth and uses a simple approach to estimate this effect. In several of the ground water studies, this
simulation approach generated more degradation than was experimentally observed and resulted in
under prediction. For compounds with significant leaching concerns, it may be necessary to obtain one
or more experimental measurements of degradation rate in subsoils to ensure reasonable accuracy in
simulating the leaching of trace concentrations of pesticides from the root zone. In the absence of
experimental rate data, a more rapid rate of decline in degradation rate with depth would help eliminate
the under prediction problem.
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Table 7-7. The ratios of pesticide soil pore-water concentrations (simulated value / experimental value)
for leaching simulations.

Site Ratio of Peak Soil Pore-water Depth Interval for Modeling Level
Concentrations Data
(simulated / experimental) {cm)
CA1L 0.01-0.10 90 - 360 site-specific
FL1L
GA1L 0.03-1.7 180 — 360 site-specific
0.43-0.90 180 — 360 calibrated
GA2L 0.03 - 0.08 (Poor fit, see Appendix 6) 150 - 270 site-specific
KS1L 0.00 (Poor fit, see Appendix 6) 90 - 198 site-specific
NC1L 0.76 - 1.36 90 - 270 site-specific
NC2L 0.28-1.68 90 - 360 site-specific
NC3L 0.54 — 16.45 90 - 360 site-specific
NC4L 3.53 - 4.01 90 - 210 cold
1.99 ~- 2.22 90 - 210 site-specific

Blank box indicates no data available for comparison

The absolute values of the ratios of peak soil pore-water concentrations for the highest and lowest values
from each study were plotted in Figure 7-2. Based on this figure, the median expected accuracy of
simulating pesticide concentrations in soil pore-water following the site-specific SOP was approximately
11X. The simulation was within a factor of 100X up to 80% of the time.

The prediction of trace-level residues in soil pore-water or ground water is a technically difficult challenge,
especially for multiple applications of pesticides at relatively high use rates. However, the results
obtained in this modeling exercise indicate that reasonably accurate values can be obtained in many
cases. There were a number of studies that resulted in ratios of approximately 2X which is excellent
agreement for a model such as PRZM 3.12. For NC4L, both cold and site-specific modeling were
performed. The cold modeling agreed with the experimental data within approximately 4X while the site-
specific modeling improved this agreement {o within a factor of 2X. This good agreement in this case
resulted from the fact that the pesticide degraded rather slowly in the soil profile and the adjustment of the
half-life with depth did not significantly affect the predicted concentrations.
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Figure 7-2. Accuracy of simulated pesticide concentrations in soil pore-water (since this is a plot of the
absolute value of the log of the simulated/experimental data, the accuracy of the simulation is evaluated
without regard to whether the result was an over-prediction or under-prediction).
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The overall agreement between the simulations and the experimental data have been summarized in
Table 7-8. Following the SOP for site-specific modeling, bromide concentrations in soil and soil pore-
water can typically be simulated within a factor of 2-3X of experimental results. Pesticide concentrations
can be simulated within a factor of 3X in soil in the top 120 cm of the soil profile. Pesticide soil pore-water
concentrations can typically be simulated within a factor of 11X to depths of up to 360 cm.

Table 7-8. Summary of median ratios of simulated/experimental values for bromide and pesticide from
leaching simulations.

Parameter Depth Intervals Median Ratio (Typical Expected Accuracy)
{cm) Cold Site-Specific Calibrated

Bromide

Concentration 0-120 3X 2-3X ND
Sall 100 ~ 300 3X 2X ND
Soil Pore-water

Pesticide

Concentration 0-120 4X 3X ND
Soil 100 - 300 typically > 11 X 11 X 2-3X
Soil Pore-water

A detailed sensitivity analysis was also performed for three runoff data sets (NC1L, NC2L, and NC3L)
using the Plackett-Berman sensitivity analysis tool. The PB analyses indicated that total application rate,
soil bulk density (an indicator of available water holding capacity), the soil partition coefficient, and
pesticide degradation rates were commonly the most sensitive inputs (Table 7-9).
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Table 7-9. Results of Plackett-Berman analyses for leaching expressed as relative importance of
sensitive components.

NC1L NC2L NC3L
Total Dissolved| Total Dissolved Flux Total Dissolved Flux
relative importance of sensitive components

Bulk density (AWHC) 22 16 51 77 15 20 14 13
Total applied 26 23 20 19 12
Max rooting depth 7 4] 3 1 &) 8 8 16
Decay rate (layer 1) 20 16 34 7 7 6
Decay rate (layer 2) 4 4 11
Decay rate (layer 3) 2
Kd (layer 1) 4 17 4 60 5 5

Kd (layer 2) 3 9 6
RO curve number 1 4 2 5 4
RO curve number 2 3 2 5 4 10

Pan factor 2 4 2 4 3 8

Monte-Carlo simulations were also performed with GA1L and NC4L. to evaluate the effect of uncertainty
in the input parameters on the model predictions (Appendix 8). For GA1L the predicted soil
concentrations seemed to be in good agreement with the measured values. The estimated spatial and
temporal profile of pore water bromide movement through the soil core was highly correlated to the
measured data from the soil suction lysimeters but the model predictions of the magnitude of the bromide
pore-water concentration were not accurate. Similar results were obtained for NC4L. except that the
predicted soil concentrations were not as close to the measured values.

Conclusions from the Leaching Simulations

(1) Based on the resuits obtained from bromide simulations, PRZM 3.12 is capable of simulating
reasonable rates of ground water recharge in highly vulnerable agronomic settings when the soil
characteristics are appropriately represented. Annual recharge rates of 29 to 59% of precipitation
plus irrigation were simulated for the study sites.

(2) The Rawls and Brakensiek regression equations provided in the PRZM3 manual provided
appropriate soil characteristics, at least for the sandy, highly transmissive soils present in all study
sites.

(3) The plant uptake of bromide and pesticide was simulated to be a significant dissipation mechanism
for highly mobile chemicals with moderate to long soil half-life values. The uptake of pesticides
seems to be higher than would be expected based on the limited data available.

(4) For foliarly applied compounds, the extent of canopy interception, degradation on the plant canopy
and foliar washoff are critical in determining the soil loading. Reasonable estimates of these values
for foliarly applied chemicals must be provided for accurate predictions.

(5) Two of the most sensitive parameters affecting the simulated concentrations of pesticide in soil and
s0il pore-water were the sorption coefficient and the degradation rate. Appropriate values of these
properties must be used in order to obtain reasonable estimates of leaching under field conditions.
Moving from cold modeling using “worst-case” physical properties to site-specific modeling using
“typical” or “best-estimate” values can resulted in significantly improving the agreement with actual
field data. For NC4L., the agreement for pesticide concentration in soil pore-water changed from 4X
for cold simulations to a factor of 2X for site-specific simulations.
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(6) PRZM3 was unable to simulate early detections of pesticide which were attributed to a preferential
flow mechanism. Some experimentally observed concentrations were relatively low (less than 1
ug/L) and did not result in repeated detections in shallow ground water. The model was generally
unable to simulate this behavior.

Recommendations from the Leaching Simulations

(1) A standardized operating procedure (SOP) should be developed to guide the appropriate
parameterization of PRZM3 for use in regulatory submissions. The SOP should provide guidance on
selecting appropriate chemical, soil, agronomic and climatic data to ensure consistent and technically
sound modeling results that are acceptable for regulatory purposes.

(2) Due to known deficiencies in the Thornwaite evapotranspiration routine used in PRZM3, daily
evapotranspiration was calculated for each site using a modified Penman equation. The ET routine
in PRZM3 should be upgraded to a more reliable algorithm.

(3) For purposes of model evaluation, hydrodynamic dispersion was set to zero at all depths and fixed
compartment sizes were used at various depths in the soil profile as specified in the SOP. This
approach created some degree of numerical dispersion which resulted in band broadening of the
concentration profile with depth. To improve the simulation of the movement of pesticides,
recommendations for appropriate levels of hydrodynamic dispersion should be developed through
use of parallel modeling using a Richards equation-based models coupled with the convection-
dispersion equation.

(4) The accuracy of simulating pesticide concentrations at soil depths deeper than one meter could be
improved with additional experimental data on the rate of degradation in subsoils. For some
pesfticides, more sophisticated degradation kinetics may be needed to accurately simulate movement
of trace level residues to deeper soil depths.
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8.0 Conclusions and Recommendations

The following general conclusions can be drawn from the results of the validation work for use of PRZM3
in a regulatory setting to estimate leaching and runoff.

e The work presented in this report shows that PRZMS3 provides a reasonable estimate of
chemical runoff at the edge of a field if the uncertainties in the model input parameters are
propagated to mode! output. Uncertainty in the input parameters related {o scenario
definition (for example, field characteristics and climate) is less important in a regulatory
setting than when comparing predicted and observed for determining model performance).
Simulations based on the best choices for input parameters (no conservatism built into input
parameters) show that simulations are generally within an order of magnitude of measured
data with better agreement observed for larger events with better agreement obtained for
cumulative values over the study period . When the model input parameters are calibrated to
improve the hydrology, the fit between predicted and observed improves (results are usually
within a factor of three). The errors obtained from the simulations with the calibrated
hydrology is relevant to regulatory applications since a fixed scenario definition implies a
fixed hydrology. When conservatism is deliberately introduced into the input pesticide
parameters substantial over-prediction of runoff loses occur. Apart from the parameters
defining the scenario, the most sensitive parameters affecting runoff losses in the water and
sediment phases were partitioning coefficient and degradation rates.

e Simulations with PRZM3 show that reasonable estimates of leaching were obtained in
homogeneous soils where preferential flow is not significant. PRZM3 usually did a good job
of predicting movement of bromide in soil {soil and soil pore-water concentrations were
generally within a factor of two of predicted values). For simulations based on the best
choices for input parameters (no built in conservatism), predictions of soil concentrations for
pesticides were usually within a factor of three and soil pore-water estimates were within a
factor of 11. When the model input parameters were calibrated to improve the simulation of
hydrology, predicted pesticide concentrations in soil pore-water were usually within a factor of
two of measured concentrations. Because of the sensitivity of leaching to degradation rate,
the most accurate predictions were obtained with pesticides with relatively slow degradation
rates. When conservative assumptions were used to define input pesticide parameters,
predictions of pesticide concentrations were usually at least a factor of two greater than when
using the best estimate of input parameters without any built in conservatism.

¢ The initial work conducted by different contractors showed the importance of having an SOP
which defines the selection of all model input parameters. What seem like relatively
unimportant model parameters such as compartment size can have a major effect on the
answers produced. The most satisfactory way to implement regulatory modeling is through
the development of a shell which provides all input parameters related to the scenario, with
the user providing only the parameters related to the specific pesticide being assessed. This
is especially relevant for PRZM, which requires an experienced user to provide input data in
card format and to interpret the lengthy tabular output.

The comparison of predicted and observed values indicated a few areas where improvements to PRZM3
could have a beneficial effect. These can be divided into two categories. The first are improvements that
help to get better predictions for a given scenario (for example, improved descriptions of processes). The
second category consists of improvements that help to better define the scenario being simulated.
Improvements in the second category are especially important in more precisely describing the scenario
when comparing predicted and observed values.
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Process Improvements

Probably the most important area related to runoff modeling for further improvement in PRZM3 is a better
description of evapotranspiration. The evapotranspiration routine in PRZMS3 typically underestimates
actual evapotranspiration resulting in incorrect simulation of runoff and excessive estimates of recharge.

For leaching modeling the most important need is better description of degradation rates in surface and
subsoils. Because the amount of predicted leaching for mobile compounds is relatively sensitive to the
degradation rate, further work needs to be done to more accurately determine the most appropriate
degradation rate to use in a specific situation. Because degradation rates from laboratory studies are
often slower than actually occur in the field, use of laboratory data sometimes can result in overly
conservative estimates of leaching. A number of potential possibilities could be explored. An example
would be to see if degradation estimates could be improved by inverse modeling of field studies to
determine temperature and soil moisture corrected degradation rates, which could then be used with an
appropriate model accounting for changes in degradation with temperature and moisture. One potential
area for long range research might be to better understand biological degradation, including the effects of
previous stresses on microbe populations such as cold temperatures and dry conditions. When
compounds have the potential to move below the root zone, better procedures for developing degradation
rates in subsoils (for both chemical and biological degradation pathways) are also important.

One other process that seems to need improvement is the crop uptake factor. Although plant uptake is
usually not measured in field studies, the limited field data suggest significantly lower uptake than
predicted by PRZM. Predictions from other environmental models (PELMO, PEARL, and MACRO) are
also lower than predictions from PRZM3. Usually uptake will have a relatively minor effect on the answer
s0 another approach would be to not consider losses due to this mechanism.

Separating the effects of degradation and sorption is relatively difficult when comparing predicted and
observed concentrations since for a given data point in time and space, similar concentrations can
sometimes be predicted using different sets of sorption and degradation parameters. In general PRZM
seems to overestimate movement with a portion of the residues staying nearer the surface longer than
would be expected based on modeling. Sorption routines that consider increasing sorption with time may
be one approach to obtaining better agreement between predicted and measured soil concentration
profiles.

A number of different processes that are important under environmental conditions are not accounted for
in PRZM. These include various types of preferential flow, transport due to freezing and thawing of sail,
and crusting of the soil processes. PRZM3 should not be expected to give accurate predictions when any
of these processes are a significant pathway for transport. If predictions under such conditions are
necessary for regulatory modeling, additional work will be necessary to best define how such processes
can be described mathematically and then these descriptions could be incorporated into future versions
of PRZM.

Improvements in Scenario Description

In order to be able to use daily rainfall, PRZM3 assigns a rainfall distribution based on a regional average
to each rainfall event. Therefore, this average regional distribution is not likely to represent the
distribution that occurred during the actual rainfall event at a study site. Using the actual storm intensity
in the model predictions would improve the agreement between predicted and observed data. However,
such data is not routinely collected at most U.S. weather stations. For regulatory modeling, incorporating
actual rainfall intensity rather than using an average rainfall intensity since the scenario defined by the
model does not have to represent an actual situation (only be representative of actual situations).

For leaching proper definition of soil hydraulic properties is essential. The work of the task force indicated
that use of hydraulic property measurements from disturbed cores did not provide acceptable results.
Correlations based on the Rawls and Brackensiek equation greatly improved predictions although data
from undisturbed soil cores should be used if available.
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Comparisons of predicted and observed concentrations would also probably be improved by including
seasonal variations of the crop cover and Manning’s roughness equations, allowing the SCS curve
number to vary throughout the cropping season, and permitting the extraction depth to vary by site or
over time (all of these items are discussed more fully in the summary of the runoff simulations). These
changes, unlike the other potential changes in this section, will help to provide a more realistic scenario
definitions, even for modeling of a site that is not necessarily intended to be description of an existing site.
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